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Protein folding with the adaptive tempering Monte
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Characterization of the folding transition in a model protein was achieved with the recent multicanonical tempering method
implemented with Monte Carlo the adaptive tempering Monte Carlo (ATMC) (X. Dong and E. Blaisten-Barojas. Adaptive
tempering Monte Carlo method. J. Comput. Theor. Nanosci., 3, p. 118 2006). The folding transition temperature was
successfully determined and a spread of states was observed around the interface between native and folded regions. Energy
states collected from all tempering events in a series of parallel runs were used in the calculation of the free energy, internal
energy, order parameter and radius of gyration as a function of temperature through the weighted histogram method. Not only
the calculated thermodynamic properties are in good agreement with results from Langevin dynamics simulations (D. K.
Klimov and D. Thirumalai. Native topology determines forced-induced pathways in global proteins. Proc. Natl. Acad. Sci.
USA. 97, p. 7254 2000), but also this multicanonical approach is noticeably more efficient because of the adaptive manner in
which the system visits states near a transition in the interface between two phases. Additionally, the ATMC is advantageous
for protein simulation over regular single canonical ensemble methods because it accelerates the hopping between local

energy minima on the potential energy surface.

Keywords: Protein folding; Tempering; Monte Carlo; Multicanonical; ATMC

1. Introduction

Characterization of the thermodynamics and kinetics of
the protein folding transition remains a challenging
problem in protein physics due to numerous local minima
of the protein potential energy landscape (PES) {1-3].
A similar difficult problem arises in finding the global
minimum of nanoclusters, where the multitude of
geometries associated with isomers have energies very
close to each other [1]. In this recent publication, the
adaptive tempering Monte Carlo (ATMC) method was
developed and used for obtaining the global minimum of
systems with rough PES. This new methodology excels by
allowing for adaptive excursion-inquiries of the PES
consistent with local changes in temperature, e€ach
temperature identifying a different canonical ensemble
and thus setting the transitioning between ensembles
smoothly. This strategy results in rapid discovery of
complex topological paths on the PES leading towards the
global minimum. The ATMC belongs to the family of
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multicanonical methods, also called simulated tempering
[4,5]. The strategy of the ATMC is based on sequential
swapping between canonical ensembles. This is advan-
tageous when compared to parallel tempering methods
such as the replica exchange parallel algorithm [6]
because no synchronization is required between the
processors associated to each of the tempering events. The
sequential ATMC has been successful in finding the most
ordered state for atomic nanoclusters described both
classically and quantum mechanically [7].

In this work, we extend the application of the ATMC to
the characterization of polypeptide folding using a
continuum minimal model representation. Additionally,
we describe and use our new parallel version of the
ATMC, which utilizes several processors to speed-up
calculations without disturbing the advantageous sequen-
tial canonical sampling of the PES. It is demonstrated
along this work that ATMC sampling allows for the
prediction of the folding transition temperature and
several thermodynamics properties of the model protein.
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The methodology is successful, thus providing a good new
approach for the study of protein folding in other proteins.
This paper is organized as follows: the protein model
Hamiltonian is described in Section 1, a brief description
of the ATMC is given in Section 2. Section 3 contains the
results and the paper is concluded in Section 4.

2. Description of the protein model

Each amino acid in the protein is represented by a bead
(figure 1) giving a coarse-grained representation of the
polypeptide [2]. The beads are connected by pseudo
chemical bonds to form a linear polypeptide chain. The
amino acid sequence in such polypeptide is composed of
three types of residues: the hydrophobic (B), the
hydrophilic (L) and the neutral (N). The conformational
potential energy of this model contains the bond length
potential Vg;, bond angle potential Vga, dihedral angle
potential Vpy and non-bonded potential Vnon:

E,({7:}) = VL + VBa + Vpm + Vion 1)

where {7;} represents the coordinates characterizing a
peptide conformation, i =1,2,... ,N,, and N, is the
number of beads in the polypeptide chain. Vpg;, has the
following expression:

’ _N,—l oo ,
BL = Z 5('73‘4—1 il — a) 2)

i=1

where &, = IOOEh/az, a=23.8A is the average bond
length between two beads and €, =~ 1.25 kcal/mol is the
average strength of the hydrophobic interactions. The
bond angle potential Vg, is taken to be

Vor= 3" %g - oy 3

BA = ; > (6: — 6b) 3

where kg = 20¢y,/ (rad)®> and 6, = 1.8326rad = 105° is
the average bond angle between three successive beads
i, i+ 1, i+ 2. The dihedral angle ¢, is the angle between
two planes, each of which is defined by beads i, i + 1,
i+2 and by beads i+ 1, i+2, i+ 3, respectively.
Repulsive interactions between overlapping orbitals and
steric overlap between atoms are contributing factors to a
dihedral angle potential Vpyy, which describes the energy

Figure 1. The native state of the polypeptide. Beads represent
amionoacids. Colors identify neutral (white), hydrophobic (gray) and
hydrophilic (black) residues.

variation due to bond rotations;

N,-3
Vom = Z [Ai(1 + cos ¢;) + Bi(1 + cos3d;)] (4)

i=1

where A; = 0 and B; = 0.2, when two or more than two
of the four beads are neutral, otherwise A; = 1.2¢;, and
B; = 1.2€,. This choice of Vpy facilitates chain
flexibility and turn formation within the chain regions
containing large numbers of N residues. In other regions,
the polypeptide backbone has a propensity to adopt
B-strand conformation. The non-bonded potential Vyon
describes the pair interactions between the residues that
are not covalently bonded:

N,—3 N,
Vion = Y > Vi(») )

i=1 j=i+3

where r = |F; — 7| is the distance between beads i and j.
Three cases arise depending on the combinations of the
types of i and j in equation (5):

Via=te|(@)*+(O)]. amros @
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where €, = 2/3€;, and X is a dimensionless parameter that
introduces a Gaussian distribution in the strength of the
hydrophobic interactions. The data reported in this work
are in reduced units of €, for energy and a for length. The
reducing unit of mass for the beads is my ~ 2107 g.

Due to the proper distribution of B, L and N residues and
\ factors, the potential function E;, encodes the formation
of four strands B-barrel as the conformation with the lowest
energy (native state) shown in figure 1. In this figure,
hydrophilic, hydrophobic and neutral residues are colored
in black, grey and white, respectively. A quasi order
parameter Q for monitoring the structural changes in the
simulations is introduced with the following definition: for
the native state, all the inter-bead distances that appear in
equations (6a~c) are calculated and those that fall within
a cut-off distance of 1.8 are counted. In the native state, the
value of Q is 106. For other states, Q changes value and
decays to zero. In previous studies, several properties for
this polypeptide were computed with Langevin dynamics
and the WHAM multiple histogram analysis [2].

3. The adaptive tempering method

The ATMC belongs to the family of expanded ensembles
methods [4,5]. In these approaches, a multitude of
different Gibbs ensembles are connected by different
techniques. The ATMC links many canonical ensembles
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by a super Markov chain which simulates how the
temperature hops between two contiguous canonical
ensembles with sub-partition functions Z4 and Zg. The
total partition function Z of the expanded ensemble is the
sum of n of such sub-partition functions:

Z=Y Ziexp(—m) ™
i=1

where Z; is the partition function associated with the ith
canonical ensemble and 7; is the corresponding weight.
In the ATMC method [1], the system accesses a
multitude of NVT; (canonical) ensembles and each T;
characterizes a different canonical ensemble. Each
canonical ensemble is simulated with the standard
Metropolis Monte Carlo (MC) algorithm for a fixed
number, Mg,eq, Of steps on the PES. The canonical
ensembles are connected along the simulation such that
their characteristic temperature T is allowed to hop to
either T + AT or T — AT (AT > 0) with probabilities:

= P~ (EN(1/ks(T + AT) — (1/ksT))]

4 o (8a)
S o <E>)<1/kBV(VT ~AD) = (/D] o)

Here E is one of the Mfy;,.q instantaneous energy points of
the PES corresponding to one state building the canonical
ensemble with temperature T, (E) is the Metropolis-MC
average energy of the Mg, states and W is a
normalization factor. After some algebraic rearrange-
ments, a new canonical ensemble adapted to the location
of the system in the PES is determined by characterizing
its new temperature (N and V continue to be the same) as:

T? — AT?
Tadapt = (T—“_) )]

where AT is:

_ T
" 1 — 8E/(In(a)kgT)

AT (10)
Here 6E is the standard deviation of the energy about the
average (E) at temperature Tover the Mg,.qg NVI-MC trials.
One parameter In(a) is introduced, in terms of which T agapc
is readily obtained. A large In(a) results in a fast excursion
to low temperatures whereas a small In(a) leads the system
to a larger number of temperature changes. Full details
about this method have been published elsewhere [1,7].
In what follows a tempering event refers to the process of
hopping between temperatures. Therefore, along the
simulation the tempering events are numbered sequentially
indicating how the system visits the range of temperatures
spanned by the simulation. After each tempering event, the
system evolves for another Mgyeq NVI-MC steps at the
new chosen temperature (either T + AT or T — AT). All
simulations were started from different high temperature
random conformations of the protein. The simulation
is stopped when the temperature is close to zero.

The potential energy E is calculated consistent with the
model described in Section 2.

All simulations in this work were done with the parallel
implementation of the ATMC. This approach allows
starting the ATMC from several protein configurations,
each processor handling the tempering from a different
initial condition. The parallel process permits simul-
taneous excursions on the PES, which accelerates the
calculations with an almost perfect speedup. Segments
of data are appended when a temperature is repeated,
ensuring coordination between the processors.

It is important to compare the ATMC method with the
temperature replica exchange method (TREM), which is
widely used in biomolecular simulations and often referred
as the parallel tempering method [6]. Several advantages
over TREM methodologies are offered by ATMC: (i)
ATMC can be implemented either in parallel or serial
computations. In particular, ATMC is well suited for grid
computing using stand-alone computers connected via low-
speed networks. In contrast to TREM, we should emphasize
that ATMC does not require dedicated multiprocessor
clusters, in which all replicas are to be simulated
concurrently; (ii) the temperature in ATMC is a dynamically
adjusted variable and the predetermined grid of temperature
values required in TREM is not needed; (iii) the ATMC
method can perform two tasks simultaneously—a collection
of conformational states for the weighted histogram analysis
method (WHAM) {8] computations and a search for the
ground state of the system. Although a rigorous comparison
of the efficiency of conformational sampling provided by
TREM and ATMC is beyond the scope of this paper, it is
clear that ATMC can be used as a precursor for TREM
simulations designed to provide a rough mapping of
system’s equilibrium behavior and to identify the global
minimum corresponding to the ground state. Based on this
mapping the distribution of temperature values in TREM
can be better established. Therefore, we believe that ATMC
can be a useful addition to the algorithmic toolkit available
for computational biophysicists.

4. Protein folding process

The optimum values for the two ATMC parameters are
Msxeg = 1000 and In(a) = —1. These parameters were
determined after a few trials to ensure that the ground state
is not reached too fast and are used throughout in this work.
Figure 2 shows results from one of the parallel simulations
illustrating the evolution of the temperature (a), the
potential energy (b) and the order parameter ¢ (c) as a
function of tempering event. There are 5079 tempering
events in this case, showing that the polypeptide explores a
multitude of conformations. A correlation plot between the
potential energy and the temperature is shown in figure 3(a)
and the correlation between the order parameter and
temperature is shown in figure 3(b). In these two figures,
each dot corresponds to one of the 5079 tempering events.
Figure 3(a) is a collection of eight simulations showing that -
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Figure 2. Properties evolution along the tempering simulation: (a)
temperature; (b) potential energy; (c) order parameter; and (d) radius of
gyration. Reduced units are used throughout.

folding and unfolding of the protein occurs around the
transition temperature of 0.79 [2]. Indeed, figure 3(a) shows
a transition region associated with fluctuating states around
the interface between the protein native and unfolded
regions. The interface region spans from T = 0.5 to 0.9.
Details of the folding mechanism are clarified in
figure 3(b) where the order parameter shows the formation
of intermediate partially folded structures. These partially
‘folded structures appear in all simulations. It is apparent
that the interface region around the folding transition
temperature is due to excursions between the native
structure and partially unfolded structures with @=70.
Further analysis of the sequence of events indicates that
when this partially folded protein was tempered to a
slightly higher temperature, the subsequent temperature
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Figure 3. Correlation plots: (a) between temperature and total potential
energy from eight parallel runs; (b) between temperature and order
parameter for the simulation shown in figure 2. Reduced units are used
throughout.

changes emulated an annealing towards lower tempe-
ratures that produced full folding into the native state. This
scheme of annealing-tempering-annealing occurred
several times populating the interface region.

Simulation with the ATMC is fast for collecting thermal
data because each thread (processor) performing one
simulation contributes to the mutual sampling of the PES.
These data can be used to study several thermodynamic
functions based on multiple histogram analysis. The
WHAM [8] has been a standard tool for predicting
thermodynamic properties from independent NVT simu-
lations. To illustrate the use of ATMC data with WHAM,
histograms of the energies at all tempering events of the
ATMC simulations were built containing 71,339 states.
For comparison, six independent NVI-MC simulations at
temperatures 7 = 0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1 were
performed, which accumulated histograms with two million
states for each temperature. Comparison of the two types of
histograms of the potential energy is shown in figure 4. The
smooth curve identifies the sampling done with regular NVI-
MC and the jagged curve corresponds to the sampling from
the ATMC. The major features of the histograms are similar
considering that sampling with the NVI-MC was not done at
temperatures below 0.4 and above 1.1. In general, figure 4
shows that ATMC samples diverse regions of the PES.

Next, the energy histograms from these two approaches
(NVI-MC and ATMC) were used in the WHAM
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Figure 4. Histogram of the energy states accessed by the NVI-MC at
T =104,0.5,06,0.7,0.8,0.9,1.0,1.1 (smooth line) and by the ATMC
(jagged line).

calculations to estimate the temperature dependence of
various thermodynamic quantities. The essence of the
WHAM method consists in adding a pre-factor weight
to the Boltzmann factor in the canonical ensemble.
Then the average value of a quantity such as E at a fixed
temperature 7’ for a single histogram hA(E; T) collected at
various temperatures 7 is:

> EQUE) exp(—BE)
>_eUE) exp(—BE)

(E) = W(E; T)Z exp(BE)

(E(T) = 11)

(12)
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where B = (ksT)"! and Z is the canonical partition
function. Then WHAM assumes that many independent
simulations are carried out at R predefined temperatures
and a consolidated histogram with M bins is constructed
by merging data from all the simulations. It is assumed
that the histograms of E at each of the predetermined
temperatures are independent. Consequently, the B-scaled
free energy f = BA and the thermal average of a property
such as Q are given at a temperature i by:

exp(—fi) = exp(—Bidi) = Z; (13a)
M — .
Z = Z _ hy exp(— BiEx) (13b)
=1 2m=1"m €XP(BnAm — BnEr)
M —_ . .
0; = g exp(—BiEx)/ Z; (130)

e SR M exp(BmAm — BmEr)

where g is the kth bin of the histogram for the quantity Q.
Equation (13b) is solved iteratively to calculate the free
energy and thereof equation (13c) is used to calculate the
thermodynamic properties. One has to be aware that the
WHAM requires input from many independent simu-
lations. There have been studies [9] addressing the
application of WHAM with data obtained from simulated
tempering and parallel tempering and the problem arising
due to the fact that tempering data might not be
independent. Results in this work contribute to elucidate
this point.
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Figure 5. Temperature dependence of the free energy (a); potential energy (b); order parameter (c); and radius of gyration (d) estimated with WHAM
using the states from NVI-MC simulations (circles) and the states from ATMC (continuous line). Here, the radius of gyration is defined as the arithmetic

average of the squared distances of the beads from the center of mass.
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Figure 6. The four partial order parameters Q, as a function of
temperature calculated with WHAM using data from ATMC. Triangles-
line are for the two terminal strands and dotted-lines are for the two
central strands.

Figure 5 shows the comparison of the free energy,
potential energy, order parameter and radius of gyration
calculated with WHAM using the histograms built with the
states from NVI-MC (dots) and ATMC (continuous line)
simulations. The free energies from the two calculations are
almost identical. It is to be noted that the free energy
temperature profile obtained from WHAM in figure 5 is also
consistent with that obtained previously from Langevin
dynamics [2]. Because the range of temperatures sampled
with the NVI-MC simulations does not contain tempera-
tures below 0.4 or above 1.1, WHAM calculated properties
are valid within these temperatures. This limitation is
visible in figure 5(b—d). Previous studies identified the
folding transition temperature as 0.79 [2]. The ATMC
sampling used to obtain the quantities represented in figure
5 is consistent with previous results [2].

The order parameter Q could be divided into four
similarly defined partial order parameters Q,, each of them
associated with one of the nth strands in the native
conformation. Figure 6 illustrates the temperature depen-
dence of these four partial order parameters calculated
within the WHAM approach and with the ATMC sampling.
It is evident that around the folding transition temperature,
all the strands fold cooperatively at the temperature close to
the folding transition temperature. This result demonstrates
all-or-none characteristics of this model.

The excellent agreement of ATMC data with the
standard NVI-MC WHAM approach. indicates that the
states from all the tempering events are independent.
There is a much richer set of histograms from the PATMC
than from the NVI-MC. In our case, the former gaverise to
120 histograms, whereas the latter was based on 6
histograms. This confirms that ATMC is very efficient for
sampling a wide range of energy states.

5. Conclusion

In this paper, we demonstrated the use of the ATMC
allowed for characterizing the folding transition in a

continuum minimal representation model protein. The
folding transition temperature was successfully identified
and the collection of tempering events suggests that the
folding transition is weakly first order. It was also
demonstrated that performing several parallel simulations
enriches the sequential tempering data accumulated in each
ATMC run. Data gathered from the ATMC parallel runs are
useful for further estimates of the protein thermodynamic
quantities based on the weighted multi histogram method.

The parallel new implementation of the ATMC is an
appropriate approach for systems that undergo complex
phenomena, such as protein folding, where the PES needs
to be sampled extensively. The result of our study shows
that ATMC represents a new efficient method for sampling
conformational space in biomolecules and alerts the
molecular simulation audience of its potential success in
protein folding searches. The general nature of ATMC
algorithm makes it applicable to more detailed models
of proteins with ragged energy landscape and also opens
a new avenue for adaptive tempering implementations of
isothermal molecular dynamics, including Langevin
dynamics.
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