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The Adaptive Tempering Monte Carlo (ATMC) optimization method based on multi-canonical Monte
Carlo is proposed in this work to optimize the preferred structure of atomic clusters. The method also
works well to obtain the structure of solid crystals at low temperatures resulting from an annealing
process. The weights that link the sub-canonical ensembles are adapted progressively during the
simulation. The method was tested on Morse atomic clusters containing 10—155 atoms, for which
the global minimum structures were obtained at the end of quenches from high temperature to zero
temperature. A second example was the structural optimization of quantum tight-binding clusters of
calcium containing 13 to 32 atoms. A third example is the solidification of a Lennard-Jones liquid
system, which yielded a crystal with few defects in a single pass of the tempering method. The
ATMC proves to be very efficient for optimization of ordered structures, and can be used in classical
and quantum approaches.
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1. INTRODUCTION of a system of N particles and Hamiltonian H(q), each
In the last few years there has been a lot of interest around Zis
different implementations of the simulated tempering
method proposed individually by Marinari and Parisi' and
by Lyubartsev et al.> The method involves the construction
of a Markov chain of configurational energies in which
E,(T,) is linked to Ez(Tg), where A and B identify two
different partition functions of the same type of statistical
mechanics ensembles at two temperatures 7, and Tj.

The new sampling distribution characterizes an expanded

Z= = [ew(~H@)/ksT)da o

where k&, is Boltzmann’s constant. If 7; is the Gibbs dis-
tribution, the usual particle displacement to yield a config-
uration at temperature 7; with the Metropolis acceptance
criterion:

acc = min[lv exp _(H(qnew) - H(qold))/kB T;] (3)

is adopted for sub-ensemble i. In the simulation it is nec-

ensemble. If there are n of such partition functions, the
expanded ensemble is obtained from the following parti-

tion function: .
Z= Zzi exp(—mn;) )]

i=1
where Z, is the partition function associated with the sam-
pling distribution of a standard NVT ensemble and 7, are
weights. Each Z; is usually referred as sub-ensemble of
the expanded ensemble. The basic idea is to construct Z
so that the corresponding sampling distribution explores
all the regions of configuration space ‘containing’ evenly
regions associated to two phase-constrained distributions
and the regions in between them. This approach also
bears other names, i.e., simulated tempering,3 umbrella
sampling,® multicanonical,? just to mention a few. For the
case m, representing the Gibbs canonical ensemble NVT
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essary to consider a second type of MC-move, which
attempts to change sub-ensembles, i.e. from m to m’ such
that this move keeps the effective configuration q constant
whilst attempting to change the sampling distribution
from m, = Z,exp(—n,,)/Z to mw,, = Z,, exp(—n,,)/Z.
Generally m’ is chosen to be an adjacent sub-ensemble
of m. In order to satisfy detailed balance and in order
to yield a sampling distribution with a partition function
given by Eq. (1), such a move must be accepted with
probability:

)

o~ (H@/kg Ty +10)
e~ (H@/ksTpt1,)

acc = min[l,

Under the sampling distributions ,, and ,, it follows
that the ratio of the probabilities of the simulation being
found in these two sub-ensembles is given by:

T, Z
_m _ Zm (=) 5)

T Ly
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Since the gatio of the probabilities of finding the simulation
in two sub-ensembles is estimated by the ratio of the times
spent in the two sub-ensembles, one can determine an esti-
mate for the ratio between partition functions by means of
an estimator R, .. By hopping between the sub-ensembles
the simulation is able to explore a wider region of an
effective configuration space than it would under a sam-
pling experiment performed with any one of the individual
sampling distributions r,,. In order to ensure that the
simulation visits all requested sub-ensembles, one must
first ensure that sufficient intermediate sub-ensembles have
been constructed to allow for distribution overlaps. One
must also ensure that the correct weights 7,, have been
chosen so as to guarantee that the simulation is able to
frequently traverse between the regions of (effective) con-
figuration space typically associated with phase A and
those typically associated with phase B. One way to do
this is to choose the weights so that equal times are
spent in all the sub-ensembles. In this case one sets 1), =
In(Z,) = constant. However since a priori the partition
functions are not known, it follows that the weights must
be constructed in an iterative fashion, i.e. via the visited
states method or the Wang-Landau method,®”7 as is done
in the Umbrella Sampling method.**> Having obtained the
weights one may then proceed to estimate the ratio of
the partition functions by appeal to the estimator R,, ..
Customarily, this R,, ,, for NVT systems is done through
three types of strategies: the reference state technique,
the continuous phase technique, and the phase mapping
technique.

Lyubartsev et al.? reached Eqgs. 1-5 by defining an effec-
tive Hamiltonian containing the weights 7,,, H(q), =
H(q)/kyT, + m,,. These effective Hamiltonians lead to
Gibbs distribution for fixed i, such that a conventional
Metropolis acceptance strategy can be used, although two
types of MC moves are also involved. These authors relate
the differences in weights m to differences in free energy
and use the ideal gas at high temperatures as the reference
system.

The optimization of the best structure of atomic clusters
is difficult because of the multitude of geometries asso-
ciated with isomers, which have energies very close to
each other. This problem is encountered in both classical
and quantum mechanical methods to represent the total
energy of the system at zero temperature. In this paper we
propose a simulation method that permits to optimize clus-
ter structures, and that can be either linked to calculation
of energies through classical approaches based on model
potentials or to a quantum tight-binding approach. The
process is the Adaptive Tempering Monte Carlo (ATMC)
method that we describe in Section 2. Section 3 of this
paper describes the results for Morse clusters containing
80 to 150 atoms. Section 4 gives an overview of the com-
bination of the ATMC with the tight binding (TB) calcu-
lation of the energy of calcium clusters containing 13 to
32 atoms. The TB model used was discussed in a previous
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paper.® In Section 5 we discuss the use of the ATMC
for infinite systems, and the example is the crystalliza-
tion of Lennard Jones liquids. This paper is concluded in
Section 6 with summarizing remarks.

2. THE ADAPTIVE TEMPERING
MONTE CARLO

In the Adaptive Tempering MC method (ATMC), the sys-
tem accesses a multitude of NVT, ensembles, where each
T, characterizes a different ensemble within a predeter-
mined temperature range. The set of temperatures 7; is
not necessarily associated to two phases of the system.
Each canonical ensemble is simulated with the Metropo-
lis acceptance criterion of Eq. (3) for a fixed number of
configuration changes Mg, with a variable step size to
roughly accept 50% of configuration changes and reject
50%. The various ensembles are connected along the sim-
ulation by a super-Markov chain in which for AT > 0,
the temperature 7T is allowed to hop to either T + AT or
T — AT with the following probabilities:

7, =exp| €~ ) =orrams ~ o7 ) /2 ©

m_= exp[—(E— <E>)<m - kBLT)]/Q ™

where E is the M, instantaneous configuration energy
at T, (E) is the MC average energy of the M., configu-
rations, and the normalization factor Q is such that 7, +
7_ = 1. After some rearrangements, these probabilities can

be rewritten as:

(2]
T, =e kg Tadapt /Qadapt (8)
 E—(E
m_ = e[ Gﬁ;};]/gadapt (9)
where
Qadapl =2 COSh((E - <E>)/kBTadapl) (10)
and where
T = (T° = AT?)/AT (11)

is an adaptive local temperature. An estimate of this adap-
tive local temperature is obtained from AT

T

T = 8B Gnk,T) (12)

Here 8F is the standard deviation of the energy about the
average (E) at temperature T over the Mj,., configuration
trials. We introduce one parameter /n(a) in terms of which
T ape 18 readily obtained. In the following sections we give
several examples with the optimal value of /n{a) in each
case. This algorithm enables the system to visit a wide
range of temperatures. Every time that the temperature

hops to a new temperature, we say that a tempering event
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took place. Subsequently, the system evolves for another
M;,.q set of configurations satisfying Eq. (3) at either T +
AT or T — AT. In all simulations the system is started
from an arbitrary initial configuration at high temperatures
close to the upper limit of the allowed temperature range.
The simulation is stopped when the temperature is close to
zero. The energy E is calculated consistent with the model
used to simulate the system, which is not restricted to be
a classical energy from a model potential. Additionally,
the adaptive tempering algorithm might be easily com-
bined with other ways to calculate (E) and 8E, such as
molecular dynamics or Langevin dynamics and is not nec-
essarily an exclusive MC method.

In the ATMC, the system spends equal times in all
the sub-ensembles. In Eq. (6), the weights 7 are locally
assigned an adaptive constant based on the local 7, and
the fact that three sub-ensembles are considered at each
tempering step, i.e., the actual sub-ensemble NVT and the
two neighboring sub-ensembles NV (T + AT). Therefore,

Ny = ln(zj:) = i(E - <E>)/kBTadapt = |E - <E>|/(3kBT)
(13)
The practical implementation of the ATMC is simple. An
NVT Metropolis MC with adaptive step size is run for
M;,.q steps at the initial temperature 7. The (E) and 6FE
are calculated and E of the M}, is known. Next, AT is
calculated from Eq. (12) and one of the two probabilities
@, or 7_ is selected when its numerator in Eq. (6) or
Eq. (7) is <1. A random number uniformly distributed
(0,1) is thrown. If the chosen 7r is larger than the random
number, the temperature is changed consistent with the
chosen 7. If the chosen 7 is smaller than the random
number, then the other 7 is selected. In either case, the
temperature is changed and the new temperature is T +
AT or T — AT. Subsequently the Metropolis MC sim-
ulation is restarted from the known Mf , configuration
but now at the new temperature. New values of (E), 6E,
and E are calculated at the end of another set of M, 4
steps. A new AT is calculated, and the above-discussed
process is repeated to select another new temperature.
This adaptive process is continued until the system reaches
a final temperature close to zero, at which point the simu-
lation stops. Would the simulation be continued, it would
reach negative temperatures, and basically does not return
to high temperatures once the ground state is reached.
The ATMC is not a parallel algorithm. However, parall-
elization can be achieved effectively at the implementation
level. For example, using the Portland Group compiler,’
the speedup on our shared memory parallel machine is
almost perfect. The advantage of ATMC over other tem-
pering implementations such as the replica exchange par-
allel algorithm of Ref. [10] is that no synchronization
is required between the processes associated to each of
the tempering events. The ATMC removes this rigid
requirement.
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3. CLASSICAL ATMC:
MORSE NANOCLUSTERS

Several materials have been modeled under the Morse
potential. This model potential, and combination of several
of them, is extensively used in the embedded atom model.
When used to model clusters, the structures of lowest
energy change with the softness of this potential. This
characteristic was emphasized in the past, and the value of
the parameter associated to the repulsion at short distances
(p) has been reported for several metals.!! For clusters
containing N atoms, a concise database!? contains the
structural information of known preferred geometries for
up to N = 80. We used the ATMC to search for the
energetically preferred structures of larger Morse clusters.
These clusters are in the nanometer size domain containing
81 to 155 atoms.

The calculations were done in reduced units of the
Morse parameters D, for energy and r, for distances. Then,
the total binding energy E of a cluster with N atoms is

N N
EN =ZZ[eP(1‘rﬁ)(€p(l_r"/) - 2) +a(rij/rcage) M] (14)
i=1j<i

where r;; are the distances between atoms in the cluster.
The first term corresponds to the Morse potential, and the
second term is a cage potential with central symmetry
added to maintain the atoms inside a spherical volume of
radius r,,.. For this calculation we used two values of
the Morse parameter p = 3.0 and 3.68. Additionally, a =
1.0 x 10~* and Teage Was chosen to be roughly twice the
maximum distance between atoms in the initial configura-
tion of each cluster. Temperature is in units of D, /kg. The
best values of the two ATMC parameters are Mg, .4 = 100
and [n(a) = —0.7 and the ATMC process was started for
all sizes at about 7= 0.5 and various initial configura-
tions corresponding to Lennard Jones (LJ) clusters with the
same number of atoms, spherical cuts from the fcc lattice,
or other previous configurations. Figure 1 illustrates the
evolution of the temperature and the binding energy as a
function of tempering event for a cluster with N =116
atoms. There are 2120 tempering events in this case, show-
ing clearly that the cluster is visiting a vast region of con-
figuration space. The correlation between visited energies
and accepted temperatures is shown in Figure 1lc, which
suggests an almost linear temperature-energy correlation
along each of the two phases accessed along the tempering.
Table I contains binding energies and point groups of
the preferred structures for the case p = 3.0 discovered by
the ATMC. Table II summarizes the same quantities for the
case p = 3.6. Values reported in the third column of these
tables correspond to the pure Morse binding energy (first
term of. Eq. 14) once the final structure from the ATMC
process has been locally minimized. This binding energy
as a function of size is plotted in Figure 2a (empty circles).
As expected, the binding energy per atom has a steady
increase with increasing size. Figure 2a also illustrates the
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Fig. 1. Evolution of the temperature (a) and the energy (b) as a function
of tempering event for the 116-atom Morse cluster (p = 3.0); (c) cor-
relation between energy and temperature during the tempering process.
Energies are in reduced units of D, and temperatures in units of D, /K.

energies for clusters in the size range 10 to 80 (black cir-
cles) already reported in the literature.'? The large clusters
tend to have low symmetry; for the case p =3.0 N =
110, 116, 121, 148 and for the case p = 3.68 N = 116,
136, 141 are exceptions with point group C,. Addition-
ally, for the later N =91 is Dy cluster and N = 135, 147
are /,. In Figures 2b, ¢ we report the stability pattern of
these clusters given by the second difference of the binding
energy A,

Ay=Ey_—2Ey+Ey, (15)

The A, is used to determine the relative stability of clus-
ters, indicating that sizes corresponding to peaks are rel-
atively more stable than the neighboring sizes. Based on
this analysis, the more stable clusters in the newly studied
size range are 105, 110, 115, 142, and 152 for the case of
p=3.0 and 105, 115, 135, and 147 for the p = 3.68 case.
The later shares the same magic number N = 147 with the
Lennard Jones clusters,'® which is a MacKay icosahedron.
Additionally the Morse N = 135 cluster with /, sym-
metry is an energetically preferred structure, whereas the
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Table I. Morse clusters with p = 3.0: binding energy per atom (in units
of D,) and the corresponding point group.

N Energy/N N Energy/N N Energy/N

81 —8.6683 C, 106 —9.4533 C, 131 -10.0710 C,
82 -87019 ¢, 107 -94815 C, 132 -100916 C,
83 —-8.7397 C, 108 -95100 C, 133 -10.1119 G,
84 -87731 ¢, 109 -95371 C, 134 —10.1306 C,
85 —-88076 C, 110 -—9.5848 D 135 -—10.1549 C,
86 —-8.8418 (¢, 111 -9.6074 C, 136 -10.1770 C,
87 88731 ¢, 112 -9.6345 C, 137 -10.1983 C,
88 —-89052 ¢, 113 —-9.6688 C, 138 -102189 C(,
89 —-89369 C, 114 -97040 C, 139 -102371 C(,
90 —89716 C; 115 -9.7522 C, 140 -102743 (C,
91 -89997 ¢, 116 -9.7742 C, 141 —-103103 C;
92 —-9.0355 ¢, 117 -97962 C, 142 -103275 C,
93 -9.0638 ¢, 118 -98183 (C; 143 —10.3457 C,
94 -9.0962 C, 119 -9.8400 C, 144 -103637 C,
95 -9.1291 ¢, 120 -9.8614 C, 145 -—10.3807 C,
96 -9.1591 C, 121 -9.8827 C; 146 —10.4000 C,
97 -9.1875 ¢, 122 -99033 C, 147 -104184 C,
98 -9.2171 ¢, 123 -9.9239 C, 148 -104373 D,
99 —9.2457 C, 124 99441 C, 149 -104556 C,
100 -92734 ¢, 125 -99640 C, 150 -—104730 C,
101 —-93015 C, 126 -—9.9839 C; 151 —10.4900 C,
102 -93221 ¢, 127 —-10.0039 C, 152 —10.5079 C,
103 -93581 C, 128 —10.0205 C; 153 —10.5308 C,
104 -93845 C; 129 -10.0333 C, 154 —10.5628 D,
105 —-9.4308 D, 130 —10.0516 C, 155 -10.5779 C,

Lennard Jones cluster of that size is not a magic number
but has the same structure.

Interesting to note is the fact that in the Morse nano-
clusters with very soft repulsive wall of p = 3.0, the

Table II. Morse clusters with p = 3.68: binding energy per atom (in
units of D,) and the corresponding point group.

N Energy/N N Energy/N N Energy/N
81 —6.5494 C, 106 -6.9240 C, 131 -72197 C(,
82 —-6.5594 C; 107 —-6.9372 C, 132 -7.2232 C,
83 —-6.5792 C, 108 —6.9460 C, 133 72310 C,
84 —-6.5%96 C, 109 —-69586 C, 134 -—-7.2526 C,
85 —-6.6186 C; 110 -69740 C, 135 72862 I,
86 —6.6358 C, 111 —69862 C, 136 -=7.2945 C;
87 -6.6568 C, 112 -=7.0078 C, 137 —=7.3027 G,
88 -6.6673 C, 113 -7.0299 C, 138 —-73108 G,
89 —6.6864 C, 114 -7.0516 C, 139 -=73187 (,,
90 —-6.6983 C, 115 -=7.0836 C, 140 -73265 C,
91 —-6.7159 Dy 116 -7.0931 C5 141 73342 C;
92 —-6.7283 C, 117 -7.1024 C, 142 73418 C,
93 —6.7456 C, 118 -=7.1116 C; 143 -7.3493 (,,
94 —-6.7638 C, 119 -=7.1205 C, 144 -73567 C,
95 —-6.7727 C, 120 -7.1292 C, 145 -=73639 G,
96 —-6.7898 C, 121 -7.1377 C; 146 -173711 C;
97 —-6.7980 C, 122 —-7.1460 C, 147 -=7.3781 I,
98 —-6.8110 €, 123 -7.1541 C, 148 —=73751 C,
99 —-6.8231 C, 124 -7.1620 C; 149 73808 D,
100 —-6.8422 C, 125 -7.1697 C, 150 73870 C,
101 -6.8571 C, 126 -7.1796 Cs 151 -=73974 C,
102 -6.8721 C, 127 -—-7.181 C, 152 74037 C,
103 -6.8910 C, 128 -—7.1965 C, 153 74104 C,
104 —6.9051 C, 129 -7.2047 C, 154 74184 (,
105 -69187 ¢, 130 -7.2126 C, 155 —74229 C,
121
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Fig. 2. Morse clusters: (a) Binding energy per atom of Morse clusters
as a function of size; (b) Stability pattern as a function of size for p = 3.0;
(c) Stability pattern as a function of size for p = 3.68. Energies are in
reduced units of D,.

internal atoms are quasi-bounded to their neighbors. For
example, the N = 82 cluster has 28 internal atoms with
positive pair interactions with several neighbors. There-
fore these atoms are rattling inside the cluster. This effect
might be the source for the low symmetry characteristics
of the Morse nanoclusters with low values of p. For a
cluster of the same size, but p = 3.68, all interatomic inter-
actions are negative and the cluster has a higher symmetry
of C,. Figure 3 shows a comparison of the pair distribu-
tion functions of the Morse N = 82 cluster and that of
the magic number of calcium clusters Cag, (D,,) within
the tight binding approximation.® The first-neighbor inter-
atomic distances in the Morse cluster with p = 3.0 peaks
at r = 0.8003. At this interatomic distance the pair poten-
tial is zero, which indicates that most atoms are not bound
to the shell of first neighbors, but rather the external shells
keep the cluster together. The first-neighbor peak shifts
to r = 0.9311 for the Morse potential with p = 3.68, for
which the pair interactions are now all negative. However,
when compared to the tight binding result for Cag,, it is
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Fig. 3. Comparison of the pair correlation function of the optimized
N = 82 cluster with Morse potential p = 3.0 (dotted line) and p = 3.68
(solid line) with the optimized calcium Cag, cluster with the tight binding
model (dashed line). Distances are reported in units of r, for the Morse
case and with r, =3.8213 A for the TB case.

seen that the second-neighbor distances are in agreement,
but the first coordination shell is compressed in the case
of the Morse cluster.

The results in this section were collected from 16 ATMC
runs for all cluster sizes done in parallel using 16 pro-
cessors. The repeat process was necessary to verify that
the optimized structures were repetitive. Discrepancies
between different runs did not exceed four structures. As
a further verification of the ATMC we optimized Lennard
Jones (LJ) clusters containing 10-150 atoms, and again,
the known structures were reproduced in just one passage
of the ATMC. The ATMC parameters for LJ clusters were
the same than those used for the Morse clusters.

4. QUANTUM ATMC:
TIGHT BINDING CLUSTERS

The TB model and parameters adopted to obtain the bind-
ing energy E were previously used by the authors in
Ref. [8] where readers are referred for details. The model
is based on the Slater-Koster (SK) approach!'* in which s,
p, and d orbitals span a 9 x 9 matrix representation of the
TB Hamiltonian for each atom in the cluster. The basis set
is non-orthogonal and the model has 97 parameters associ-
ated to the analytical representation of on-site and hopping
integrals. These parameters were fitted to the energy bands
and cohesive energy of bulk fcc and bee calcium!®® and to
the ab initio energy surfaces'® of Ca, through Ca,; and are
reported in Ref. [8].

The two ATMC parameters were set to Mg..4 = 100
and In(a) = —2."7 The starting cluster configurations are
spherical cuts from a simple cubic lattice. Before the tem-
pering starts, any given cluster is warmed up for 10,000
iterations of a regular canonical ensemble MC at tempera-
ture 7 =800 K. At this point the adaptive tempering starts,
and the system adaptively changes temperature until the

T.. reaches the desired lower limit, which was ~1 K.

J. Comput. Theor. Nanosci. 3, 118-127, 2006
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Fig. 4. Temperature and average binding energy along the ATMC simulation. (a), (b), (c)—Cay; (d), (e), (f—Ca,,.

A typical example of the temperature evolution as the
ATMC progresses is given in Figure 4 for a cluster with
23 atoms. Figure 4a shows the evolution of the tempera-
ture, which changed 247 times. Figure 4b depicts the cor-
responding changes in the average binding energy as the
tempering process evolves. Figure 4c shows the correla-
tion between tempering temperature and average binding
energy along the tempering evolution. For some of the
cluster sizes studied, the system evolves for a number of
iterations, reaches a relatively low temperature where it
seems to be trapped in a local minimum. Then the ATMC
allows the system to overcome barriers and escape from
such local minimum leading the system to excursion again
to high temperature regions. Finally after more tempering
events the system lands in the global minimum. One of
such cases is shown in Figuers 4d, e, f for a Ca,, clus-
ter. As seen in Figure 4d, the cluster visits temperatures
of about 50 K several times, and then rapidly takes excur-
sions to regions of configuration space of higher binding
energy (Fig. 4e). However, the cluster is able to hop out of
these regions and excursion back to regions consistent with
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low temperatures. The cluster finally finds the global min-
imum, and the temperature collapses fast to 1 K. For this
example there were 707 tempering events before ending
the process. The correlation plot in Figure 4f shows clearly
the successful efforts of the ATMC method to lead at low
temperatures to the global minimum.

In Table III, third column, we have gathered results of
the binding energy E, per atom, same results that are
depicted in Figure 5a. The binding energy is defined as
the TB electronic energy of a cluster of N calcium atoms
minus N times the TB energy of one calcium atom. In
Figure S5a, the TB results correspond to the empty trian-
gles. For comparison, Table III, second column and the
black triangles in Figure 5a are the TB energies of clus-
ters with geometries borrowed from the Morse potential
(parameter p = 3.68 adjusted for calcium'!), which have
been isotropically scaled to reach a minimum TB energy.
It is clear that none of those Morse geometries is preferred
over the configurations obtained with the ATMC.

The second difference of the TB energies obtained by
our calculation is shown in Figure 5b. Peaks correspond to
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Table III. Comparison of the binding energy of tight binding calcium
clusters optimized with ATMC (second column) with the tight bind-
ing energy of clusters assuming a Morse structure with p = 3.68 (fifth
column).

—Ey/N (eV) —Ey/N (V)
from Point from morse Point
N ATMC group N structure group
14 0.8684 C,, 14 0.8568 (&
15 0.9178 C,, 15 0.8121 Dy,
"~ 16 0.9319 C, 16 0.9158 C,
17 0.9680 C, 17 0.9455 Cs,
18 0.9894 C, 18 0.9734 Cs,
19 1.0266 Dy, 19 1.0153 D,
20 1.0471 C,, 20 1.0345 C,,
21 1.0700 C,, 21 1.0434 C,,
22 1.0804 C, 22 1.0689 C,
23 1.1138 C,, 23 1.0985 D,,
24 1.1211 G, 24 1.1046 C,
25 1.1389 C, 25 1.1255 C,
26 1.1547 T, 26 1.1501 T,
27 1.1732 C, 27 1.1571 C,
28 1.1878 C, 28 1.1781 C,
29 1.2058 D,, 29 1.2009 Dy,
30 1.2171 C,, 30 1.2038 G,
31 1.2338 C, 31 1.2206 C,
32 1.2540 C, 32 1.2424 C,,

energetically preferred sizes because a size associated with
a peak is more stable than the two neighboring sizes. It
is interesting to note that there is an even-odd alternation
where odd sizes are more stable than even sizes. Three
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Fig. 6. Six new calcium cluster structures. Ca,s, Ca,,, and Ca,, are
magic numbers.

of these sizes, 15, 21, and 23 show the most abrupt
drop of peak height towards larger sizes. Because of that,
these sizes can be called magic numbers. In this TB
approach, the core electrons of Ca are frozen, and only the
2 valence electrons are considered. Therefore, the number
of electrons corresponding to these magic number clusters
is 30, 42, and 46, which are not consistent with shell clos-
ings of the jellium model (20, 40, 58, etc).

When analyzing closely the optimized cluster geome-
tries, we find that all of them except for six are relaxed
Morse structures in which bond lengths and angles accom-
modate somehow to adjust for the large surface to volume
ratio. These six clusters, Ca,s, Ca,q, Cag, Ca,,, Cay,, and
Ca,s depicted in Figure 6, have a structure not previously
reported in the literature as energetically most stable under
any model potential (Lennard Jones,'® Morse,'? Sutton-
Chen,'" TB-second-moment many body,?>?! Murrell
Mottram,??>? Dzugutov?*). The three C,, magic number
clusters are among the six new structures. The Ca;s clus-
ter is a pentagonal bipyramid with apex vertexes capped
by two parallel squares. The Ca,; cluster has a struc-
ture built on the elongated 19-atom icosahedron capped
with one pentagonal pyramid to which two symmetrically
opposed sides are decorated by dimers. The Ca,, cluster
is an incomplete 23-atom cluster in which two atoms are
missing, the apex vertex atom and one from the pentagonal
pyramid underneath.

TB also provides the one-electron quantum levels of the
cluster valence band. It is interesting to note that these
eigenvalues present a large energy gap between the high-
est occupied state and lowest unoccupied state of 0.63,
0.47, and 0.48 eV for the magic number clusters Cas,
Ca,,, and Ca,,, respectively. However, the energy gap
for all other sizes in the range studied is smaller, i.e.,
on the order of 0.05 to 0.1 eV. Figure 7 illustrates this
effect. Eigenvalues are sorted by energy and numbered in
increasing order from the bottom of the band. Figure 7
shows the distribution of TB eigenvalues in a £1 eV band
around the Fermi energy. Black circles identify occupied

J. Comput. Theor. Nanosci. 3, 118-127, 2006



Dong and Blaisten-Barojas

1.0 e s e e e m—
Cays o Cayg o
o° oocd)
0.5 b 0.5} b
— — @mo
S > o’
) 2 °
w 0.0 o h w 0.0 . 1
L ® L
] oo |
w w .
05+ . : -05¢ o 1
-
(1] .
_1 0 L] 1 1 1 1 _1 0 1,.9,) L i 1 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30 35
Eigenvalue Number Eigenvalue Number
1.0 Ty 1.0 T
Cay, &ﬁ“’f Cay, Py
05 & b 0.5 069 h
s s &,f“&
2 2
[+24
uth 0.0} - : "‘PL 0.0f s ]
i ° w
-05r & 1 -05} . 1
L
s -
-10 L s " s -1.0 L 1 L !
0O 10 20 30 40 50 0 10 20 30 40 50
Eigenvalue Number Eigenvalue Number
Fig. 7. Eigenvalues of Ca,s, Ca,q, Cay, Ca,, near the Fermi energy.

states whereas white squares indicate the unoccupied states.
Visually one sees that whereas the energy gap for Ca,; is
large, it is considerably smaller for Ca,¢. The same effect is
shown in Figure 7 for Ca,; and Ca,,. Therefore, electronic
effects are fundamental in the determination of the magic
numbers in calcium clusters.

5. CRYSTALLIZATION OF
A LENNARD JONES FLUID

A frequent problem of the Metropolis sampling in sim-
ulation of a structurally ordered state from a disordered
state such as a liquid is the formation of defect-rich final
structures in the case that the desired end phase is a
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o —3000
£
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© _3500

—4000

0 0.5 1 1.5 2 2.5
Temperature

Fig. 8. Energy changes of the 500-atom Lennard Jones system along the
tempering process for three values of the ATMC parameter: (1) Mg,y =
50; (2) Mgq = 1005 (3) Mg,q = 200.
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crystalline solid. This problem arises because with this
continuous path strategy the system makes excursions
between two phases continuously along the simulation,
which implies continuous crossing through regions of con-
figuration space that have a mixed-phase type. Therefore
in the transition from one phase to the other, one of
the phases disassembles whereas the other assembles in
a restructuring organized fashion. Additionally the simu-
lation wastes time in regions of configuration space that
do not contribute to the Metropolis sampling estimate.
This process strongly favors the formation of defects in the

(a) 7 T T

Temperature

0 1000 2000 3000 4000
Tempering Event

(b) 500 T T T T T
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Binding Energy
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—3000
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0 1 2 3 4 5 6 7
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Binding Energy

Fig. 9. Evolution of the temperature (a) and the energy (b) as a function
of tempering event during crystallization of a LJ liquid; (c) correlation of
temperature and energy along the tempering process. Shown is the case
with N = 500 atoms.
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final crystal. Another issue is the overlap problem in which
the simulation is trapped in one of the phases and is unable
to overcome the energy barriers to travel to the other
phase. This last problem gives rise to systematic errors,
which are difficult to eliminate. However, appropriate
extended sampling techniques® will overcome the later.
The ATMC is a convenient alternative when searching the
structure of the ordered phase.

The ATMC was applied to evaluate the structural quality
of the crystals when a liquid of LJ atoms solidifies.
Periodic boundary conditions and computational box sizes
with 108, 256, and 500 atoms were used. These systems
were started from a liquid equilibrated at high temperature.
Energies are reported in units of €, temperatures in units of
€/kg, and distances in units of . The ATMC parameters
were Mg, = 100 and Ina = —1.0 for the three systems
considered here. The selection of a good value for the first
parameter is important. In Figure 8 we show the effect of
this parameter on the tempering evolution for the case of
N =500. If the value of Mg, is too large or too small,
the final energy at zero temperature is higher, indicating
that some defects have formed. Also, if the parameter is
too large, then the simulation wastes a long time in the
region where the two phases coexist.

Figures 9a, b illustrate the evolution of temperature and
energy as a function of tempering event for the case with
N = 500. There were 5800 tempering events before crys-
tallization. Depiction of how these two quantities are corre-
lated is provided in Figure 9c. Once again, the correlation
plot shows clearly two different linear regions associated to
the two phases visited along the tempering evolution. When
one compares the bulk evolution to the cluster evolution
discussed in Section 3, it is clearly seen that in the case of
the clusters (phases not sharply separated in configuration
space) the ATMC recurs to changing the temperature up

Fig. 10. Crystal structure after tempering. The view corresponds to the
111 face of a box with (a) 108 atoms; (b) 256 atoms; (c) 500 atoms.
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Fig. 11. Pair correlation function of the N = 500 crystal: (a) initial state
at high temperature T = 4; (b) final state at low temperature 7 = 0.001.

and down several times, whereas in the bulk case once the
system finds its way towards low temperature, it stays there.
In Figure 10 we give the (1,1,1) view of the final struc-
ture obtained for each of the three computational box sizes
considered here. The crystals are almost perfect. More evi-
dence is gained from Figure 11, which depicts the pair
correlation function of the system with N = 500. At high
temperature the equilibrated initial state at 7 =4 is clearly
a liquid and the final state at 7 = 0.04 is clearly the fcc
lattice. The energy difference between a perfect fcc lattice
oriented along the 0,0,1 axis of the computational box,
and the energy of the tempered crystals are: 1.9%, 0.12%,
0.02% for the 500, 256, and 108 systems, respectively.

6. CONCLUSIONS

The computational framework of the adaptive tempering
Monte Carlo is equally accessible for handling both, phe-
nomenological particle potentials, and electronic structure
approaches, to -predict the global phase behavior leading
to the most ordered phase of a system. This is particularly
interesting for finite systems in the nanoscale regime
where the nomination of two candidate phases is not a well
defined concept. In this algorithm all anharmonicities are
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treated without approximation and one of the advantages
of the ATMC is the possibility to thermally excite them
through the tempering mechanism. The strategic advantage
of this algorithm allows the nanosystems to escape from
metastable states, which otherwise require extreme long-
time dynamics indicating that the way in which the MC
algorithm was engineered to move around configuration
space is quite effective.

All together in this work we use the ATMC to find
the sequence of growth, energetics, and stability of pheno-
menological atomic clusters modeled under the Morse
potential and containing up to 155 atoms. Magic numbers
and point group were obtained for two values of the Morse
paramater p = 3.0 and 3.68. We also have found the pre-
ferred configuration and electronic structure of calcium
clusters containing 14 to 32 atoms calculated within the
tight binding approximation. This is an example of the
possibilities that this algorithm presents to analyze systems
from the perspective of quantum mechanics. A third exam-
ple was to show the efficient crystallization obtained
numerically under the ATMC which shortcuts the need
of long times scales required in the atomic reorganization
process intrinsic in the crystallization phenomenon.

There are yet other problems where this algorithm
could result efficient to make the most of the information
available in the configurational core of the system. We
are presently exploring the awareness gained on finite size
effects seen in the cluster calculations to tackle protein
folding mechanisms of small proteins.
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