

Adaptive Tempering Monte Carlo Method

Xiao Dong and Estela Blaisten-Barojas*

School of Computational Sciences, George Mason University, Fairfax, Virginia 22030-4422, USA

The Adaptive Tempering Monte Carlo (ATMC) optimization method based on multi-canonical Monte Carlo is proposed in this work to optimize the preferred structure of atomic clusters. The method also works well to obtain the structure of solid crystals at low temperatures resulting from an annealing process. The weights that link the sub-canonical ensembles are adapted progressively during the simulation. The method was tested on Morse atomic clusters containing 10–155 atoms, for which the global minimum structures were obtained at the end of quenches from high temperature to zero temperature. A second example was the structural optimization of quantum tight-binding clusters of calcium containing 13 to 32 atoms. A third example is the solidification of a Lennard-Jones liquid system, which yielded a crystal with few defects in a single pass of the tempering method. The ATMC proves to be very efficient for optimization of ordered structures, and can be used in classical and quantum approaches.

Keywords: Computational Nanomaterials Design, Calcium Nanoclusters, Morse Nanoclusters, Monte Carlo, Multicanonical, Tempering, Structural Optimization, Tight-Binding.

1. INTRODUCTION

In the last few years there has been a lot of interest around different implementations of the simulated tempering method proposed individually by Marinari and Parisi¹ and by Lyubartsev et al.² The method involves the construction of a Markov chain of configurational energies in which $E_A(T_A)$ is linked to $E_B(T_B)$, where A and B identify two different partition functions of the same type of statistical mechanics ensembles at two temperatures T_A and T_B . The new sampling distribution characterizes an expanded ensemble. If there are n of such partition functions, the expanded ensemble is obtained from the following partition function:

$$Z = \sum_{i=1}^{n} Z_i \exp(-\eta_i)$$
 (1)

where Z_i is the partition function associated with the sampling distribution of a standard NVT ensemble and η_i are weights. Each Z_i is usually referred as sub-ensemble of the expanded ensemble. The basic idea is to construct Z so that the corresponding sampling distribution explores all the regions of configuration space 'containing' evenly regions associated to two phase-constrained distributions and the regions in between them. This approach also bears other names, i.e., simulated tempering,³ umbrella sampling,⁴ multicanonical,⁵ just to mention a few. For the case π_i representing the Gibbs canonical ensemble NVT

of a system of N particles and Hamiltonian $H(\mathbf{q})$, each Z_i is

$$Z_i = \frac{1}{N!} \int \exp(-H(\mathbf{q})/k_B T_i) d\mathbf{q}$$
 (2)

where k_B is Boltzmann's constant. If π_i is the Gibbs distribution, the usual particle displacement to yield a configuration at temperature T_i with the Metropolis acceptance criterion:

$$acc = \min[1, \exp{-(H(\mathbf{q}_{new}) - H(\mathbf{q}_{old}))/k_B T_i}]$$
 (3)

is adopted for sub-ensemble i. In the simulation it is necessary to consider a second type of MC-move, which attempts to change sub-ensembles, i.e. from m to m' such that this move keeps the effective configuration ${\bf q}$ constant whilst attempting to change the sampling distribution from $\pi_m = Z_m \exp(-\eta_m)/Z$ to $\pi_{m'} = Z_{m'} \exp(-\eta_{m'})/Z$. Generally m' is chosen to be an adjacent sub-ensemble of m. In order to satisfy detailed balance and in order to yield a sampling distribution with a partition function given by Eq. (1), such a move must be accepted with probability:

$$acc = \min \left[1, \frac{e^{-(H(\mathbf{q})/k_B T_{m'} + \eta_{m'})}}{e^{-(H(\mathbf{q})/k_B T_m + \eta_m)}} \right]$$
(4)

Under the sampling distributions π_m and $\pi_{m'}$ it follows that the ratio of the probabilities of the simulation being found in these two sub-ensembles is given by:

$$\frac{\pi_m}{\pi_{m'}} = \frac{Z_m}{Z_{m'}} e^{-(\eta_m - \eta_{m'})} \tag{5}$$

^{*}Author to whom correspondence should be addressed.

Since the gatio of the probabilities of finding the simulation in two sub-ensembles is estimated by the ratio of the times spent in the two sub-ensembles, one can determine an estimate for the ratio between partition functions by means of an estimator $R_{m,m'}$. By hopping between the sub-ensembles the simulation is able to explore a wider region of an effective configuration space than it would under a sampling experiment performed with any one of the individual sampling distributions π_m . In order to ensure that the simulation visits all requested sub-ensembles, one must first ensure that sufficient intermediate sub-ensembles have been constructed to allow for distribution overlaps. One must also ensure that the correct weights η_m have been chosen so as to guarantee that the simulation is able to frequently traverse between the regions of (effective) configuration space typically associated with phase A and those typically associated with phase B. One way to do this is to choose the weights so that equal times are spent in all the sub-ensembles. In this case one sets η_i $ln(Z_i) = constant$. However since a priori the partition functions are not known, it follows that the weights must be constructed in an iterative fashion, i.e. via the visited states method or the Wang-Landau method,^{6,7} as is done in the Umbrella Sampling method.4,5 Having obtained the weights one may then proceed to estimate the ratio of the partition functions by appeal to the estimator $R_{m,m'}$. Customarily, this $R_{m,m'}$ for NVT systems is done through three types of strategies: the reference state technique, the continuous phase technique, and the phase mapping technique.

Lyubartsev et al.² reached Eqs. 1–5 by defining an effective Hamiltonian containing the weights η_m , $H(\mathbf{q})_m = H(\mathbf{q})/k_BT_m + \eta_m$. These effective Hamiltonians lead to Gibbs distribution for fixed i, such that a conventional Metropolis acceptance strategy can be used, although two types of MC moves are also involved. These authors relate the differences in weights η to differences in free energy and use the ideal gas at high temperatures as the reference system.

The optimization of the best structure of atomic clusters is difficult because of the multitude of geometries associated with isomers, which have energies very close to each other. This problem is encountered in both classical and quantum mechanical methods to represent the total energy of the system at zero temperature. In this paper we propose a simulation method that permits to optimize cluster structures, and that can be either linked to calculation of energies through classical approaches based on model potentials or to a quantum tight-binding approach. The process is the Adaptive Tempering Monte Carlo (ATMC) method that we describe in Section 2. Section 3 of this paper describes the results for Morse clusters containing 80 to 150 atoms. Section 4 gives an overview of the combination of the ATMC with the tight binding (TB) callculation of the energy of calcium clusters containing 13 to 32 atoms. The TB model used was discussed in a previous paper.⁸ In Section 5 we discuss the use of the ATMC for infinite systems, and the example is the crystallization of Lennard Jones liquids. This paper is concluded in Section 6 with summarizing remarks.

2. THE ADAPTIVE TEMPERING MONTE CARLO

In the Adaptive Tempering MC method (ATMC), the system accesses a multitude of NVT_i ensembles, where each T_i characterizes a different ensemble within a predetermined temperature range. The set of temperatures T_i is not necessarily associated to two phases of the system. Each canonical ensemble is simulated with the Metropolis acceptance criterion of Eq. (3) for a fixed number of configuration changes $M_{\rm fixed}$ with a variable step size to roughly accept 50% of configuration changes and reject 50%. The various ensembles are connected along the simulation by a super-Markov chain in which for $\Delta T > 0$, the temperature T is allowed to hop to either $T + \Delta T$ or $T - \Delta T$ with the following probabilities:

$$\pi_{+} = \exp\left[-(E - \langle E \rangle) \left(\frac{1}{k_{B}(T + \Delta T)} - \frac{1}{k_{B}T}\right)\right] / Q \quad (6)$$

$$\pi_{-} = \exp\left[-(E - \langle E \rangle) \left(\frac{1}{k_B (T - \Delta T)} - \frac{1}{k_B T}\right)\right] / Q \quad (7)$$

where E is the $M_{\rm fixed}^{\rm th}$ instantaneous configuration energy at T, $\langle E \rangle$ is the MC average energy of the $M_{\rm fixed}$ configurations, and the normalization factor Q is such that $\pi_+ + \pi_- = 1$. After some rearrangements, these probabilities can be rewritten as:

$$\pi_{+} = e^{\left[\frac{E - \langle E \rangle}{k_B T_{\text{adapt}}}\right]} / Q_{\text{adapt}} \tag{8}$$

$$\pi_{-} = e^{\left[-\frac{E_{-}\langle E \rangle}{k_B T_{\text{adapt}}}\right]} / Q_{\text{adapt}} \tag{9}$$

where

$$Q_{\text{adapt}} = 2 \cosh((E - \langle E \rangle)/k_B T_{\text{adapt}})$$
 (10)

and where

$$T_{\text{adapt}} = (T^2 - \Delta T^2)/\Delta T \tag{11}$$

is an adaptive local temperature. An estimate of this adaptive local temperature is obtained from ΔT :

$$\Delta T = \frac{T}{1 - \delta E / (ln(a)k_B T)} \tag{12}$$

Here δE is the standard deviation of the energy about the average $\langle E \rangle$ at temperature T over the $M_{\rm fixed}$ configuration trials. We introduce one parameter ln(a) in terms of which $T_{\rm adapt}$ is readily obtained. In the following sections we give several examples with the optimal value of ln(a) in each case. This algorithm enables the system to visit a wide range of temperatures. Every time that the temperature hops to a new temperature, we say that a tempering event

took place. Subsequently, the system evolves for another $M_{\rm fixed}$ set of configurations satisfying Eq. (3) at either $T+\Delta T$ or $T-\Delta T$. In all simulations the system is started from an arbitrary initial configuration at high temperatures close to the upper limit of the allowed temperature range. The simulation is stopped when the temperature is close to zero. The energy E is calculated consistent with the model used to simulate the system, which is not restricted to be a classical energy from a model potential. Additionally, the adaptive tempering algorithm might be easily combined with other ways to calculate $\langle E \rangle$ and δE , such as molecular dynamics or Langevin dynamics and is not necessarily an exclusive MC method.

In the ATMC, the system spends equal times in all the sub-ensembles. In Eq. (6), the weights η are locally assigned an adaptive constant based on the local T, and the fact that three sub-ensembles are considered at each tempering step, i.e., the actual sub-ensemble NVT and the two neighboring sub-ensembles $NV(T \pm \Delta T)$. Therefore,

$$\eta_{\pm} = \ln(Z_{\pm}) = \pm (E - \langle E \rangle) / k_B T_{\text{adapt}} \cong |E - \langle E \rangle| / (3k_B T)$$
(13)

The practical implementation of the ATMC is simple. An NVT Metropolis MC with adaptive step size is run for M_{fixed} steps at the initial temperature T. The $\langle E \rangle$ and δE are calculated and E of the $M_{\text{fixed}}^{\text{th}}$ is known. Next, ΔT is calculated from Eq. (12) and one of the two probabilities π_{+} or π_{-} is selected when its numerator in Eq. (6) or Eq. (7) is <1. A random number uniformly distributed (0,1) is thrown. If the chosen π is larger than the random number, the temperature is changed consistent with the chosen π . If the chosen π is smaller than the random number, then the other π is selected. In either case, the temperature is changed and the new temperature is T + ΔT or $T - \Delta T$. Subsequently the Metropolis MC simulation is restarted from the known $M_{\text{fixed}}^{\text{th}}$ configuration but now at the new temperature. New values of $\langle E \rangle$, δE , and E are calculated at the end of another set of M_{fixed} steps. A new ΔT is calculated, and the above-discussed process is repeated to select another new temperature. This adaptive process is continued until the system reaches a final temperature close to zero, at which point the simulation stops. Would the simulation be continued, it would reach negative temperatures, and basically does not return to high temperatures once the ground state is reached.

The ATMC is not a parallel algorithm. However, parallelization can be achieved effectively at the implementation level. For example, using the Portland Group compiler, the speedup on our shared memory parallel machine is almost perfect. The advantage of ATMC over other tempering implementations such as the replica exchange parallel algorithm of Ref. [10] is that no synchronization is required between the processes associated to each of the tempering events. The ATMC removes this rigid requirement.

3. CLASSICAL ATMC: MORSE NANOCLUSTERS

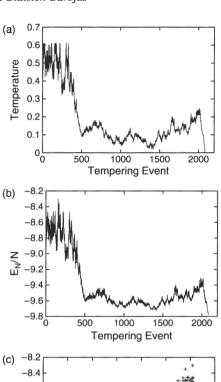
Several materials have been modeled under the Morse potential. This model potential, and combination of several of them, is extensively used in the embedded atom model. When used to model clusters, the structures of lowest energy change with the softness of this potential. This characteristic was emphasized in the past, and the value of the parameter associated to the repulsion at short distances (ρ) has been reported for several metals. For clusters containing N atoms, a concise database contains the structural information of known preferred geometries for up to N=80. We used the ATMC to search for the energetically preferred structures of larger Morse clusters. These clusters are in the nanometer size domain containing 81 to 155 atoms.

The calculations were done in reduced units of the Morse parameters D_e for energy and r_e for distances. Then, the total binding energy E of a cluster with N atoms is

$$E_N = \sum_{i=1}^{N} \sum_{j (14)$$

where r_{ij} are the distances between atoms in the cluster. The first term corresponds to the Morse potential, and the second term is a cage potential with central symmetry added to maintain the atoms inside a spherical volume of radius r_{cage} . For this calculation we used two values of the Morse parameter $\rho = 3.0$ and 3.68. Additionally, $\alpha =$ 1.0×10^{-4} and $r_{\rm cage}$ was chosen to be roughly twice the maximum distance between atoms in the initial configuration of each cluster. Temperature is in units of D_e/k_B . The best values of the two ATMC parameters are $M_{\rm fixed} = 100$ and ln(a) = -0.7 and the ATMC process was started for all sizes at about T = 0.5 and various initial configurations corresponding to Lennard Jones (LJ) clusters with the same number of atoms, spherical cuts from the fcc lattice, or other previous configurations. Figure 1 illustrates the evolution of the temperature and the binding energy as a function of tempering event for a cluster with N = 116atoms. There are 2120 tempering events in this case, showing clearly that the cluster is visiting a vast region of configuration space. The correlation between visited energies and accepted temperatures is shown in Figure 1c, which suggests an almost linear temperature-energy correlation along each of the two phases accessed along the tempering.

Table I contains binding energies and point groups of the preferred structures for the case $\rho=3.0$ discovered by the ATMC. Table II summarizes the same quantities for the case $\rho=3.6$. Values reported in the third column of these tables correspond to the pure Morse binding energy (first term of Eq. 14) once the final structure from the ATMC process has been locally minimized. This binding energy as a function of size is plotted in Figure 2a (empty circles). As expected, the binding energy per atom has a steady increase with increasing size. Figure 2a also illustrates the



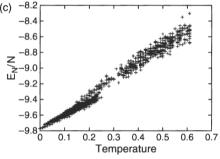


Fig. 1. Evolution of the temperature (a) and the energy (b) as a function of tempering event for the 116-atom Morse cluster ($\rho=3.0$); (c) correlation between energy and temperature during the tempering process. Energies are in reduced units of D_e and temperatures in units of D_e/K_B .

energies for clusters in the size range 10 to 80 (black circles) already reported in the literature. The large clusters tend to have low symmetry; for the case $\rho=3.0~N=110,~116,~121,~148$ and for the case $\rho=3.68~N=116,~136,~141$ are exceptions with point group C_5 . Additionally, for the later N=91 is D_5 cluster and N=135,~147 are I_h . In Figures 2b, c we report the stability pattern of these clusters given by the second difference of the binding energy Δ_2

$$\Delta_2 = E_{N-1} - 2 E_N + E_{N+1} \tag{15}$$

The Δ_2 is used to determine the relative stability of clusters, indicating that sizes corresponding to peaks are relatively more stable than the neighboring sizes. Based on this analysis, the more stable clusters in the newly studied size range are 105, 110, 115, 142, and 152 for the case of $\rho = 3.0$ and 105, 115, 135, and 147 for the $\rho = 3.68$ case. The later shares the same magic number N = 147 with the Lennard Jones clusters, which is a MacKay icosahedron. Additionally the Morse N = 135 cluster with I_h symmetry is an energetically preferred structure, whereas the

Table I. Morse clusters with $\rho = 3.0$: binding energy per atom (in units of D_{\bullet}) and the corresponding point group.

N	Energy/N		N	Energy/N		N	Energy/N	
81	-8.6683	C_2	106	-9.4533	C_1	131	-10.0710	C_1
82	-8.7019	C_1	107	-9.4815	C_1	132	-10.0916	C_1
83	-8.7397	C_2	108	-9.5100	C_2	133	-10.1119	C_3
84	-8.7731	C_1	109	-9.5371	C_1	134	-10.1306	C_1
85	-8.8076	C_1	110	-9.5848	D_5	135	-10.1549	C_1
86	-8.8418	C_1	111	-9.6074	C_1	136	-10.1770	C_1
87	-8.8731	C_1	112	-9.6345	C_1	137	-10.1983	C_1
88	-8.9052	C_1	113	-9.6688	C_3	138	-10.2189	C_1
89	-8.9369	C_2	114	-9.7040	C_1	139	-10.2371	C_1
90	-8.9716	Cs	115	-9.7522	C_1	140	-10.2743	C_1
91	-8.9997	C_1	116	-9.7742	C_5	141	-10.3103	C_5
92	-9.0355	C_1	117	-9.7962	C_2	142	-10.3275	C_2
93	-9.0638	C_1	118	-9.8183	C_3	143	-10.3457	C_1
94	-9.0962	C_2	119	-9.84 00	C_2	144	-10.3637	C_2
95	-9.1291	C_1	120	-9.8614	C_1	145	-10.3807	C_1
96	-9.1591	C_2	121	-9.8827	C_5	146	-10.4000	C_1
97	-9.1875	C_1	122	-9.9033	C_1	147	-10.4184	C_1
98	-9.2171	C_1	123	-9.9239	C_2	148	-10.4373	D_2
99	-9.2457	C_1	124	-9.9441	C_3	149	-10.4556	C_3
100	-9.2734	C_1	125	-9.9640	C_2	150	-10.4730	C_2
101	-9.3015	C_1	126	-9.9839	C_5	151	-10.4900	C_1
102	-9.3221	C_2	127	-10.0039	C_1	152	-10.5079	C_1
103	-9.3581	C_1	128	-10.0205	C_3	153	-10.5308	C_1
104	-9.3845	C_3	129	-10.0333	C_1	154	-10.5628	D_3
105	-9.4308	D_3	130	-10.0516	C_2	155	-10.5779	C_1

Lennard Jones cluster of that size is not a magic number but has the same structure.

Interesting to note is the fact that in the Morse nanoclusters with very soft repulsive wall of $\rho = 3.0$, the

Table II. Morse clusters with $\rho = 3.68$: binding energy per atom (in units of D_e) and the corresponding point group.

N	Energy/N		N	Energy/N		N	Energy/N	
81	-6.5494	C_2	106	-6.9240	C_1	131	-7.2197	C_1
82	-6.5594	C_3	107	-6.9372	C_1	132	-7.2232	C_1
83	-6.5792	C_1	108	-6.9460	C_1	133	-7.2310	C_1
84	-6.5966	C_1	109	-6.9586	C_1	134	-7.2526	C_1
85	-6.6186	C_3	110	-6.9740	C_1	135	-7.2862	I_h
86	-6.6358	C_1	111	-6.9862	C_1	136	-7.2945	C_5
87	-6.6568	C_1	112	-7.0078	C_1	137	-7.3027	C_{2v}
88	-6.6673	C_1	113	-7.0299	C_1	138	-7.3108	C_3
89	-6.6864	C_1	114	-7.0516	C_1	139	-7.3187	C_{2v}
90	-6.6983	C_1	115	-7.0836	C_1	140	-7.3265	C_{s}
91	-6.7159	D_5	116	-7.0931	C_5	141	-7.3342	C_5
92	-6.7283	C_1	117	-7.1024	C_2	142	-7.3418	C_{s}
93	-6.7456	C_1	118	-7.1116	C_3	143	-7.3493	C_{2v}
94	-6.7638	C_1	119	-7.1205	C_2	144	-7.3567	C_3
95	-6.7727	C_1	120	-7.1292	C_1	145	-7.3639	C_{2v}
96	-6.7898	C_1	121	-7.1377	C_3	146	-7.3711	C_5
97	-6.7980	C_1	122	-7.1460	C_1	147	-7.3781	I_h
98	-6.8110	C_1	123	-7.1541	C_2	148	-7.3751	C_{s}
99	-6.8231	C_1	124	-7.1620	C_3	149	-7.3808	D_3
100	-6.8422	C_1	125	-7.1697	C_{2v}	150	-7.3870	C_1
101	-6.8571	C_1	126	-7.1796	C_5	151	-7.3974	C_{s}
102	-6.8721	C_1	127	-7.1881	C_1	152	-7.4037	C_1
103	-6.8910	C_1	128	-7.1965	C_1	153	-7.4104	C_1
104	-6.9051	C_1	129	-7.2047	C_1	154	-7.4184	C_3
105	-6.9187	C_1	130	-7.2126	C_1	155	-7.4229	C_1

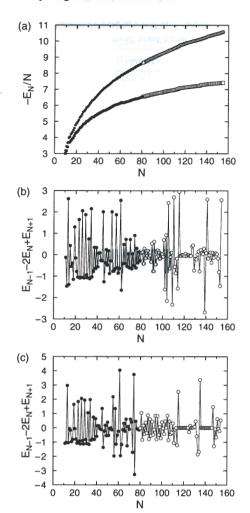


Fig. 2. Morse clusters: (a) Binding energy per atom of Morse clusters as a function of size; (b) Stability pattern as a function of size for $\rho = 3.0$; (c) Stability pattern as a function of size for $\rho = 3.68$. Energies are in reduced units of D_c .

internal atoms are quasi-bounded to their neighbors. For example, the N=82 cluster has 28 internal atoms with positive pair interactions with several neighbors. Therefore these atoms are rattling inside the cluster. This effect might be the source for the low symmetry characteristics of the Morse nanoclusters with low values of ρ . For a cluster of the same size, but $\rho = 3.68$, all interatomic interactions are negative and the cluster has a higher symmetry of C_3 . Figure 3 shows a comparison of the pair distribution functions of the Morse N = 82 cluster and that of the magic number of calcium clusters Ca_{82} (D_{3d}) within the tight binding approximation.8 The first-neighbor interatomic distances in the Morse cluster with $\rho = 3.0$ peaks at r = 0.8003. At this interatomic distance the pair potential is zero, which indicates that most atoms are not bound to the shell of first neighbors, but rather the external shells keep the cluster together. The first-neighbor peak shifts to r = 0.9311 for the Morse potential with $\rho = 3.68$, for which the pair interactions are now all negative. However, when compared to the tight binding result for Ca₈₂, it is

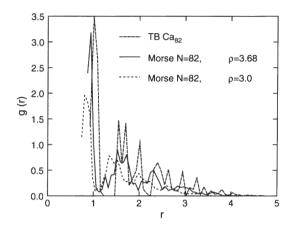


Fig. 3. Comparison of the pair correlation function of the optimized N=82 cluster with Morse potential $\rho=3.0$ (dotted line) and $\rho=3.68$ (solid line) with the optimized calcium Ca_{82} cluster with the tight binding model (dashed line). Distances are reported in units of r_o for the Morse case and with $r_o=3.8213$ Å for the TB case.

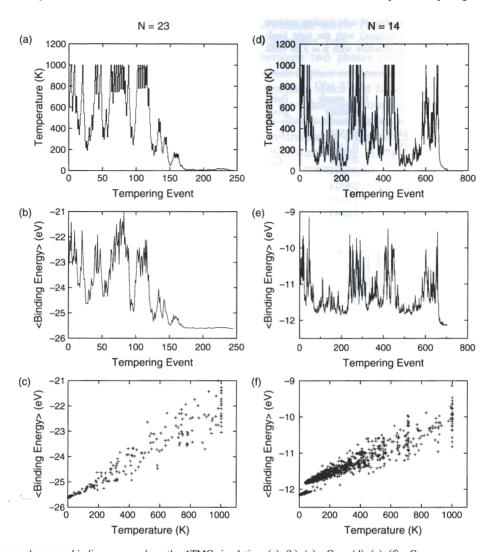
seen that the second-neighbor distances are in agreement, but the first coordination shell is compressed in the case of the Morse cluster.

The results in this section were collected from 16 ATMC runs for all cluster sizes done in parallel using 16 processors. The repeat process was necessary to verify that the optimized structures were repetitive. Discrepancies between different runs did not exceed four structures. As a further verification of the ATMC we optimized Lennard Jones (LJ) clusters containing 10–150 atoms, and again, the known structures were reproduced in just one passage of the ATMC. The ATMC parameters for LJ clusters were the same than those used for the Morse clusters.

4. QUANTUM ATMC: TIGHT BINDING CLUSTERS

The TB model and parameters adopted to obtain the binding energy E were previously used by the authors in Ref. [8] where readers are referred for details. The model is based on the Slater-Koster (SK) approach¹⁴ in which s, p, and d orbitals span a 9×9 matrix representation of the TB Hamiltonian for each atom in the cluster. The basis set is non-orthogonal and the model has 97 parameters associated to the analytical representation of on-site and hopping integrals. These parameters were fitted to the energy bands and cohesive energy of bulk fcc and bcc calcium¹⁵ and to the ab initio energy surfaces¹⁶ of Ca₇ through Ca₁₃ and are reported in Ref. [8].

The two ATMC parameters were set to $M_{\rm fixed}=100$ and $ln(a)=-2.^{17}$ The starting cluster configurations are spherical cuts from a simple cubic lattice. Before the tempering starts, any given cluster is warmed up for 10,000 iterations of a regular canonical ensemble MC at temperature T=800 K. At this point the adaptive tempering starts, and the system adaptively changes temperature until the $T_{\rm new}$ reaches the desired lower limit, which was ~ 1 K.



 $\textbf{Fig. 4.} \quad \text{Temperature and average binding energy along the ATMC simulation. (a), (b), (c) - Ca_{23}; (d), (e), (f) - Ca_{14}. \\$

A typical example of the temperature evolution as the ATMC progresses is given in Figure 4 for a cluster with 23 atoms. Figure 4a shows the evolution of the temperature, which changed 247 times. Figure 4b depicts the corresponding changes in the average binding energy as the tempering process evolves. Figure 4c shows the correlation between tempering temperature and average binding energy along the tempering evolution. For some of the cluster sizes studied, the system evolves for a number of iterations, reaches a relatively low temperature where it seems to be trapped in a local minimum. Then the ATMC allows the system to overcome barriers and escape from such local minimum leading the system to excursion again to high temperature regions. Finally after more tempering events the system lands in the global minimum. One of such cases is shown in Figuers 4d, e, f for a Ca₁₄ cluster. As seen in Figure 4d, the cluster visits temperatures of about 50 K several times, and then rapidly takes excursions to regions of configuration space of higher binding energy (Fig. 4e). However, the cluster is able to hop out of these regions and excursion back to regions consistent with

low temperatures. The cluster finally finds the global minimum, and the temperature collapses fast to 1 K. For this example there were 707 tempering events before ending the process. The correlation plot in Figure 4f shows clearly the successful efforts of the ATMC method to lead at low temperatures to the global minimum.

In Table III, third column, we have gathered results of the binding energy E_N per atom, same results that are depicted in Figure 5a. The binding energy is defined as the TB electronic energy of a cluster of N calcium atoms minus N times the TB energy of one calcium atom. In Figure 5a, the TB results correspond to the empty triangles. For comparison, Table III, second column and the black triangles in Figure 5a are the TB energies of clusters with geometries borrowed from the Morse potential (parameter $\rho=3.68$ adjusted for calcium¹¹), which have been isotropically scaled to reach a minimum TB energy. It is clear that none of those Morse geometries is preferred over the configurations obtained with the ATMC.

The second difference of the TB energies obtained by our calculation is shown in Figure 5b. Peaks correspond to

Table III. Comparison of the binding energy of tight binding calcium clusters optimized with ATMC (second column) with the tight binding energy of clusters assuming a Morse structure with $\rho=3.68$ (fifth column).

N	$-E_N/N$ (eV) from ATMC	Point group	N	-E _N /N (eV) from morse structure	Point group
14	0.8684	C_{2v}	14	0.8568	C_{2v}
15	0.9178	C_{2v}	15	0.8121	D_{6d}
16	0.9319	C_s	16	0.9158	C_s
17	0.9680	C_s	17	0.9455	C_{3v}
18	0.9894	C_s	18	0.9734	C_{5v}
19	1.0266	D_{5h}	19	1.0153	D_{5h}
20	1.0471	C_{2v}	20	1.0345	C_{2v}
21	1.0700	C_{2v}	21	1.0434	C_{2v}
22	1.0804	C_s	22	1.0689	C_s
23	1.1138	C_{2v}	23	1.0985	D_{3h}
24	1.1211	C_{2v}	24	1.1046	C_s
25	1.1389	C_s	25	1.1255	C_s
26	1.1547	T_d	26	1.1501	T_d
27	1.1732	C_s	27	1.1571	C_s
28	1.1878	C_s	28	1.1781	C_s
29	1.2058	D_{3h}	29	1.2009	D_{3h}
30	1.2171	C_{2v}	30	1.2038	C_{2v}
31	1.2338	C_s	31	1.2206	C_1
32	1.2540	C_s	32	1.2424	C_{2v}

energetically preferred sizes because a size associated with a peak is more stable than the two neighboring sizes. It is interesting to note that there is an even-odd alternation where odd sizes are more stable than even sizes. Three

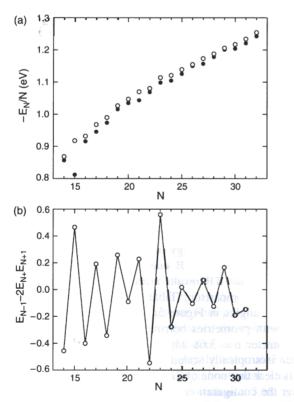


Fig. 5. Binding energy and stability pattern of calcium clusters wersus size.

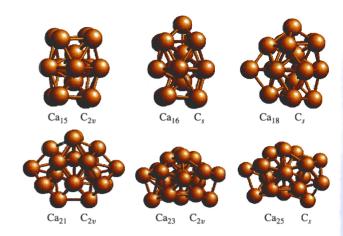


Fig. 6. Six new calcium cluster structures. Ca_{15} , Ca_{21} , and Ca_{23} are magic numbers.

of these sizes, 15, 21, and 23 show the most abrupt drop of peak height towards larger sizes. Because of that, these sizes can be called magic numbers. In this TB approach, the core electrons of Ca are frozen, and only the 2 valence electrons are considered. Therefore, the number of electrons corresponding to these magic number clusters is 30, 42, and 46, which are not consistent with shell closings of the jellium model (20, 40, 58, etc).

When analyzing closely the optimized cluster geometries, we find that all of them except for six are relaxed Morse structures in which bond lengths and angles accommodate somehow to adjust for the large surface to volume ratio. These six clusters, Ca₁₅, Ca₁₆, Ca₁₈, Ca₂₁, Ca₂₃, and Ca₂₅ depicted in Figure 6, have a structure not previously reported in the literature as energetically most stable under any model potential (Lennard Jones, 18 Morse, 12 Sutton-Chen, 19 TB-second-moment many body, 20, 21 Murrell Mottram, 22,23 Dzugutov 24). The three $C_{2\nu}$ magic number clusters are among the six new structures. The Ca₁₅ cluster is a pentagonal bipyramid with apex vertexes capped by two parallel squares. The Ca23 cluster has a structure built on the elongated 19-atom icosahedron capped with one pentagonal pyramid to which two symmetrically opposed sides are decorated by dimers. The Ca₂₁ cluster is an incomplete 23-atom cluster in which two atoms are missing, the apex vertex atom and one from the pentagonal pyramid underneath.

TB also provides the one-electron quantum levels of the cluster valence band. It is interesting to note that these eigenvalues present a large energy gap between the highest occupied state and lowest unoccupied state of 0.63, 0.47, and 0.48 eV for the magic number clusters Ca_{15} , Ca_{21} , and Ca_{23} , respectively. However, the energy gap for all other sizes in the range studied is smaller, i.e., on the order of 0.05 to 0.1 eV. Figure 7 illustrates this effect. Eigenvalues are sorted by energy and numbered in increasing order from the bottom of the band. Figure 7 shows the distribution of TB eigenvalues in a ± 1 eV band around the Fermi energy. Black circles identify occupied

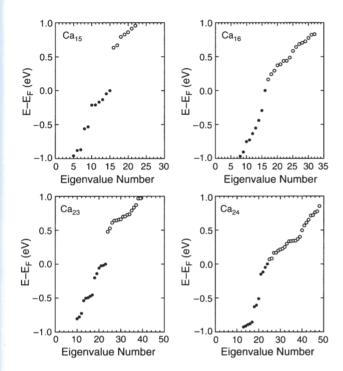


Fig. 7. Eigenvalues of Ca₁₅, Ca₁₆, Ca₂₃, Ca₂₄ near the Fermi energy.

states whereas white squares indicate the unoccupied states. Visually one sees that whereas the energy gap for Ca_{15} is large, it is considerably smaller for Ca_{16} . The same effect is shown in Figure 7 for Ca_{23} and Ca_{24} . Therefore, electronic effects are fundamental in the determination of the magic numbers in calcium clusters.

5. CRYSTALLIZATION OF A LENNARD JONES FLUID

A frequent problem of the Metropolis sampling in simulation of a structurally ordered state from a disordered state such as a liquid is the formation of defect-rich final structures in the case that the desired end phase is a

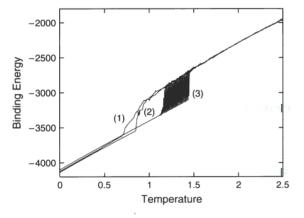


Fig. 8. Energy changes of the 500-atom Lennard Jones system along the tempering process for three values of the ATMC parameter: (11) $M_{\text{fixed}} = 50$; (2) $M_{\text{fixed}} = 100$; (3) $M_{\text{fixed}} = 200$.

crystalline solid. This problem arises because with this continuous path strategy the system makes excursions between two phases continuously along the simulation, which implies continuous crossing through regions of configuration space that have a mixed-phase type. Therefore in the transition from one phase to the other, one of the phases disassembles whereas the other assembles in a restructuring organized fashion. Additionally the simulation wastes time in regions of configuration space that do not contribute to the Metropolis sampling estimate. This process strongly favors the formation of defects in the

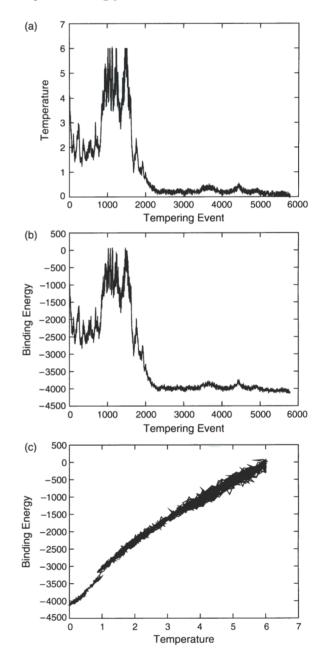


Fig. 9. Evolution of the temperature (a) and the energy (b) as a function of tempering event during crystallization of a LJ liquid; (c) correlation of temperature and energy along the tempering process. Shown is the case with N=500 atoms.

final crystal. Another issue is the overlap problem in which the simulation is trapped in one of the phases and is unable to overcome the energy barriers to travel to the other phase. This last problem gives rise to systematic errors, which are difficult to eliminate. However, appropriate extended sampling techniques²⁵ will overcome the later. The ATMC is a convenient alternative when searching the structure of the ordered phase.

The ATMC was applied to evaluate the structural quality of the crystals when a liquid of LJ atoms solidifies. Periodic boundary conditions and computational box sizes with 108, 256, and 500 atoms were used. These systems were started from a liquid equilibrated at high temperature. Energies are reported in units of ϵ , temperatures in units of ϵ/k_R , and distances in units of σ . The ATMC parameters were $M_{\text{fixed}} = 100$ and $\ln a = -1.0$ for the three systems considered here. The selection of a good value for the first parameter is important. In Figure 8 we show the effect of this parameter on the tempering evolution for the case of N = 500. If the value of M_{fixed} is too large or too small, the final energy at zero temperature is higher, indicating that some defects have formed. Also, if the parameter is too large, then the simulation wastes a long time in the region where the two phases coexist.

Figures 9a, b illustrate the evolution of temperature and energy as a function of tempering event for the case with N = 500. There were 5800 tempering events before crystallization. Depiction of how these two quantities are correlated is provided in Figure 9c. Once again, the correlation plot shows clearly two different linear regions associated to the two phases visited along the tempering evolution. When one compares the bulk evolution to the cluster evolution discussed in Section 3, it is clearly seen that in the case of the clusters (phases not sharply separated in configuration space) the ATMC recurs to changing the temperature up

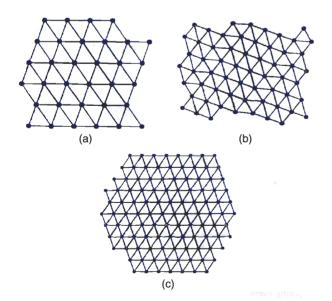


Fig. 10. Crystal structure after tempering. The view corresponds to the 111 face of a box with (a) 108 atoms; (b) 256 atoms; (c) 500 atoms.

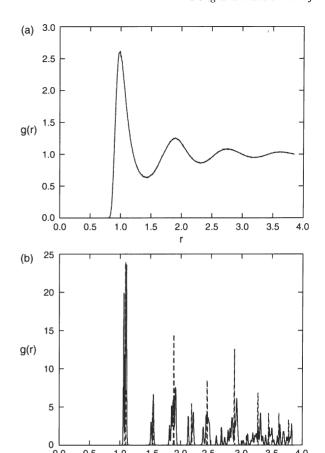


Fig. 11. Pair correlation function of the N = 500 crystal: (a) initial state at high temperature T = 4; (b) final state at low temperature T = 0.001.

and down several times, whereas in the bulk case once the system finds its way towards low temperature, it stays there.

In Figure 10 we give the (1,1,1) view of the final structure obtained for each of the three computational box sizes considered here. The crystals are almost perfect. More evidence is gained from Figure 11, which depicts the pair correlation function of the system with N=500. At high temperature the equilibrated initial state at T=4 is clearly a liquid and the final state at T=0.04 is clearly the fcc lattice. The energy difference between a perfect fcc lattice oriented along the 0,0,1 axis of the computational box, and the energy of the tempered crystals are: 1.9%, 0.12%, 0.02% for the 500, 256, and 108 systems, respectively.

6. CONCLUSIONS

The computational framework of the adaptive tempering Monte Carlo is equally accessible for handling both, phenomenological particle potentials, and electronic structure approaches, to predict the global phase behavior leading to the most ordered phase of a system. This is particularly interesting for finite systems in the nanoscale regime where the nomination of two candidate phases is not a well defined concept. In this algorithm all anharmonicities are

treated without approximation and one of the advantages of the ATMC is the possibility to thermally excite them through the tempering mechanism. The strategic advantage of this algorithm allows the nanosystems to escape from metastable states, which otherwise require extreme long-time dynamics indicating that the way in which the MC algorithm was engineered to move around configuration space is quite effective.

All together in this work we use the ATMC to find the sequence of growth, energetics, and stability of phenomenological atomic clusters modeled under the Morse potential and containing up to 155 atoms. Magic numbers and point group were obtained for two values of the Morse paramater $\rho=3.0$ and 3.68. We also have found the preferred configuration and electronic structure of calcium clusters containing 14 to 32 atoms calculated within the tight binding approximation. This is an example of the possibilities that this algorithm presents to analyze systems from the perspective of quantum mechanics. A third example was to show the efficient crystallization obtained numerically under the ATMC which shortcuts the need of long times scales required in the atomic reorganization process intrinsic in the crystallization phenomenon.

There are yet other problems where this algorithm could result efficient to make the most of the information available in the configurational core of the system. We are presently exploring the awareness gained on finite size effects seen in the cluster calculations to tackle protein folding mechanisms of small proteins.

Acknowledgments: We acknowledge support of the Research Office of the Provost of George Mason University for the assistantship allocated to XD.

References

- 1. E. Marinari and G. Parisi, Europhys. Lett. 19, 451 (1992).
- A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov, and P. N. Vorontsov-Velyaminov, J. Chem. Phys. 96, 1776 (1992).
- 3. I. Nezbeda and J. Kolafa, Molecular Simulation 5, 391 (1991).
- 4. G. M. Torrie and J. P. Valleau, J. Comput. Phys. 23, 187 (1977).
- 5. B. A. Berg and T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992).
- 6. F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).
- Q. Yan, R. Faller, and J. J. de Pablo, J. Chem. Phys. 116, 8745 (2002).
- X. Dong, G. M. Wang, and E. Blaisten-Barojas, Phys. Rev. B 70, 205409 (2004).
- PGHPFTM, The Portland Group, ST Microelectronics, Wilsonville, OR 97070.
- 10. Y. Sugita and Y. Okamoto, Chem. Phys. Lett. 314, 141 (1999).
- D. Wales, L. J. Munro, and J. P. K. Doye, J. Chem. Soc. Dalton Trans. 611 (1996).
- 12. http://brian.ch.cam.ac.uk/CCD.html.
- 13. J. A. Northby, J. Chem. Phys. 87, 6166 (1987).
- 14. J. C. Slater and G. F. Foster, Phys. Rev. 94, 1498 (1954).
- G. M. Wang, D. A. Papaconstantopoulos, and E. Blaisten-Barojas, J. Phys. Chem. Solids 64, 185 (2003).
- J. W. Mirick, C.-H. Chien, and E. Blaisten-Barojas, *Phys. Rev. A* 63, 023202 (2001).
- X. Dong, S. Gatica, and E. Blaisten-Barojas, Computing Letters 1 (2006), in press.
- D. J. Wales and J. P. K. Doye, J. Phys. Chem. A 101, 5111 (1997).
- 19. J. P. K. Doye and D. J. Wales, New J. Chem. 22, 733 (1998).
- C. H. Chien, E. Blaisten-Barojas, and M. R. Pederson, J. Chem. Phys. 112, 2301 (2000).
- G. M. Wang, E. Blaisten-Barojas, A. E. Roitberg, and T. P. Martin, J. Chem. Phys. 115, 3640 (2001).
- 22. J. N. Murrell and R. E. Mottram, Mol. Phys. 69, 571 (1990).
- J. E. Hearn and R. L. Johnson, J. Chem. Phys. 107, 4674 (1997).
- 24. J. P. K. Doye and D. J. Wales, Phys. Rev. Lett. 86, 5719 (2001).
- 25. J. R. Errington, J. Chem. Phys. 120, 3130 (2004).

Received: 20 July 2005. Accepted: 24 August 2005.