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Abstract: The most stable structure of calcium clusters with 14 to 32 atoms is optimized
by the Adaptive Tempering Monte Carlo method. The binding energy of the clusters
is obtained within the tight-binding approach parameterized in a previous work. The
optimization process is started at about 800 K and the tempering brings the structure to
the global minimum ending the process at 1 K. It is found that six cluster sizes, 15, 16, 18,
21, 23 and 25 have a global minimum structure not reported in the literature. In this size
range, Cais, Cas; and Cass are the preferred geometries that can be identified as magic
numbers. The tight-binding one-electron levels in the valence band display a large energy
gap of 0.5 eV between the last occupied and first unoccupied levels for the magic number
clusters. This band gap is 5 to 10 times smaller for other cluster sizes.
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1 Introduction

The structure and electronic properties of metallic clusters have long been subject of interest
giving rise to several popular approaches such as the jellium model for alkaline metals, in which
electron sub-shell closings occur when the number of electrons in the valance band is 2, 8, 18,
20, 34, 40, 58, 68, 90, etc. On the other hand, the alkaline earths metals such as calcium have a
different electronic behavior due to the s-p-d character of the conduction band of bulk calcium.
Recently an important computational effort led to the discovery of the preferred structures of
calcium clusters from Cag, to Cags within the tight-binding (TB) approach [1]. These clusters do
not satisfy the jellium model shell closings. Additionally, small clusters of up to 13 atoms were
investigated with the all-electron density-functional approach [2]. Calcium clusters with hundreds
of atoms have been studied with empirical classical potentials based on parameterization of bulk
properties [3]. This approach, though, is not suitable for smaller clusters since it overestimates the
binding energy [2]. However, the structure, energetics and electronic properties of clusters in the
range 14-32 have not been reported from quantum mechanical approaches. This is the subject of
the present letter. The optimization of the best structure from quantum mechanical methods is
a difficult task because clusters present many isomer geometries that are stable. The process of
finding the structure with lowest binding energy is more computationally eager than the quantum
calculation of the electronic energy of one given geometry. In this letter we propose a simulation
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method that permits to optimize cluster structures, and that we have linked to a quantum tight-
binding approach. The process is the Adaptive Tempering Monte Carlo (ATMC) [4] which is here
combined with the TB model from Ref. [1] parameterized for calcium nanoclusters. The ATMC
belongs to a family of algorithms named multicanonical and/or parallel tempering that initiated
with the work of Marinari and Parisi [5] and that of Lyubartsev et. al. [6]. This letter is organized
as follows. In section 2 we describe the ATMC method. In section 3 we describe the energetics
and structural results for Cay4 through Cags and show details on the valence band eigenvalues. In
Section 4 we present our conclusions.

2 Adaptive Tempering Monte Carlo linked to Tight-Binding

In the ATMC method [4] the system accesses a multitude of canonical ensembles, each with con-
stant T;NV, where each T; characterizes a different canonical ensemble within a predetermined
temperature range. Each canonical ensemble is simulated with the usual Metropolis Monte Carlo
algorithm, and the various ensembles are connected along the simulation by a super-Markov chain
in which the temperature is allowed to hop adaptively according to the following acceptance prob-
ability

)] (1)
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Here, E is the instantaneous cluster binding energy, kg is Boltzmann’s constant, and < E >¢
is the average cluster binding energy at temperature 7. Both T,; and T, are considered to
have hopping probabilities ¢ and p = 1 - q. The probability p is the normalized Boltzmann
factor exp(—0E/kpThew)/Z and q = exp(—0E/kpToiq)/Z where we replaced E— < E >7 by
JE, the standard deviation of the binding energy at temperature T,;4. Here Z is the normalizing
configuration integral. We introduce one parameter a in terms of which p = 1/(1+a) and q =
a/(14a). In this example of calcium clusters, the optimal value is a = 0.135. Therefore the
selection of one temperature over the other satisfies the following relation:

acc = min [l,exp[—(E— <E >ngd)(
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This algorithm enables the system to visit a wide range of temperatures. Every time that the
temperature hops to a new temperature with probability p, we say that a tempering event took
place. Subsequently, the system evolves at the new temperature T),.,, under the new canonical MC
in which the step size is also adapted to yield a run in which roughly 50% of configuration changes
are accepted, and 50% are rejected. In all simulations, the cluster was started from an arbitrary
initial configuration at high temperatures close to the upper limit of the allowed temperature
range. For calcium clusters, the upper limit for the temperature is set at 7' = 1000 K. The total
binding energy FE is calculated with the TB model from Ref. [1]. The TB model and parameters
adopted to obtain the binding energy E were previously used by the authors in Ref. [1] where
readers are referred for details. The model is based on the Slater-Koster (SK) approach [7] in
which s, p and d orbitals span a 9x9 matrix representation of the TB Hamiltonian for each atom
in the cluster. The basis set is non-orthogonal and the model has 97 parameters associated to
the analytical representation of on-site and hopping integrals. These parameters were fitted to
the energy bands and cohesive energy of bulk fcc and bee calcium [8] and to the ab initio energy
surfaces of Ca; through Ca;s [2] and are reported in Ref. [1]. The starting cluster configurations
are spherical cuts from a simple cubic lattice. Before the tempering starts, any given cluster is
warmed up for 10,000 iterations of a regular canonical ensemble MC at temperature T = 800 K.
At this point the adaptive tempering starts, and the system adaptively changes temperature until
the T,y reaches the desired lower limit, which was ~ 1 K in the case of the calcium clusters.
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A typical example of the temperature evolution as the ATMC progresses is given in Fig. 1 for a
cluster with 23 atoms. Fig. 1a shows the evolution of the temperature over approximately 10,000
ATMC iterations. Fig. 1b depicts the corresponding changes in the average binding energy as the
tempering process evolves. In this specific example, the temperature changed 247 times.
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Figure 1: Temperature and average binding energy of Cass along the ATMC simulation

For some of the clusters studied, the system evolves for a certain number of iterations, reaches
a relatively low temperature where it seems to be trapped in a local minimum. Then the ATMC
allows the system to overcome barriers and escape from such local minimum leading the system
to excursion again to high temperature regions. Finally after more tempering events the system
lands in the global minimum. One of such cases is shown in Fig. 2 for a Cay4 cluster. As seen in
Fig. 2a, at about 100 K the cluster remains quite some time in regions of configuration space with
low binding energy (Fig. 2b). However, the cluster is able to hop out of that region and excursion
to other regions consistent with high temperatures. After about an extra 10,000 MC iterations
the cluster finally finds the global minimum, and the temperature collapses fast to 1 K. For this
example, the temperature changed about 1866 times before ending the process.
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Figure 2: Temperature and average binding energy of Cass along the ATMC simulation
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3 Energetics and Structural Changes

The ATMC method was applied to all calcium cluster sizes containing 13 to 32 atoms. The
electronic energy of these clusters was in all cases calculated within the TB model described above.
In Fig. 3a we have gathered results of the binding energy Ex per atom. The binding energy
is defined as the TB electronic energy of a cluster of N calcium atoms minus N times the TB
energy of one calcium atom. In Fig. 3a, the TB results correspond to the empty triangles. For
comparison, black triangles in the figure are the TB energies of clusters with geometries borrowed
from the Morse potential (parameter p = 3.6) [9], which have been scaled consistently with the TB
energy. It is clear that none of those geometries is preferred over the configurations obtained with
the ATMC. Figure 3b shows the second difference of the TB energies obtained by our calculation.
Peaks correspond to energetically preferred sizes because a size associated with a peak is more
stable that both nearest sizes. It is interesting to note that there is an even-odd alternation where
odd sizes are preferred over even sizes. Three of these sizes, 15, 21 and 23 show the most abrupt
drop of peak height towards larger sizes. Because of that, these sizes can be called magic numbers.
In this TB approach, the core electrons of Ca are frozen, and only the 2 valence electrons are
considered. Therefore, the number of electrons corresponding to these magic number clusters is
30, 42 and 46, which are not consistent with shell closings of the jellium model (20, 40, 58, etc).
When analyzing closely the preferred cluster geometries, we find that all of them except for six are
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Figure 3: Binding energy and magic numbers of calcium clusters versus size

relaxed Morse structures in which bond lengths and angles accommodate somehow to adjust for the
large surface to volume ratio. These six clusters, Ca;s, Cajg, Cazg, Cagy, Cass and Cags depicted
in Fig. 4, have a preferred structure not previously reported in the literature as the most stable
under any model potential (Lennard Jones[10], Morse[11], Sutton-Chen [12], TB-second-moment
many body [13, 14], Murrell Mottram [15], Dzugutov[16]). The three Cs, magic number clusters
are among the six new structures. The Cays cluster is a pentagonal bipyramid with apex vertexes
capped by two parallel squares. The Cays cluster has a structure built on the elongated 19-atom
icosahedron capped with one pentagonal pyramid to which two symmetrically opposed sides are
decorated by dimers. The Cas; cluster is an incomplete 23-atom cluster in which two atoms are
missing, the apex vertex atom and one from the pentagonal pyramid underneath.

TB also provides the one-electron quantum levels of the cluster valence band. It is interesting
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Figure 4: Six new calcium cluster structures. Cais, Cag; and Cags are magic numbers

to note that these eigenvalues present a large energy gap between the highest occupied state and
lowest unoccupied state of 0.63, 0.47 and 0.48 eV for the magic number clusters Ca;5, Cag; and
Caog, respectively. However, the energy gap for all other sizes in the range studied is smaller, i.
e. on the order of 0.05 to 0.1 eV. Fig. 5 illustrates this effect. Eigenvalues are sorted by energy
and numbered in increasing order from the bottom of the band. Fig. 5 shows the distribution of
TB eigenvalues in a £1 eV band around the Fermi energy. Black circles identify occupied states
whereas white squares indicate the unoccupied states. Visually one sees that whereas the energy
gap for Cays is large, it is considerably smaller for Cajg. The same effect is shown in Fig. 5 for
Cags and Cap; has a behavior very similar to Cass. Therefore, electronic effects are fundamental
in the determination of the magic numbers in calcium clusters.
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Figure 5: Eigenvalues of Ca;s, Cajg, Cass, Cagy
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4 Conclusions

In this letter we have combined the Adaptive Tempering Monte Carlo method to optimize the
calculation of the binding energies of calcium clusters within the tight-binding quantum approach.
The ATMC is very efficient, optimizes structures in a fraction of the time the simulated annealing
method requires, and can easily be coupled to quantum approaches. The cluster sizes studied
spanned from Cajz to Cags. Within this size range, three magic numbers Ca;5, Cas; and Cags
were revealed. The structure of these magic number clusters, as well as the structure of three other
sizes (16, 18, 25), is new to the literature. Tt is also observed that a large energy gap of about 0.5
eV exists between the highest occupied TB-eigenstate and the lowest unoccupied TB-eigenstate for
the magic number clusters. The corresponding energy gap for all other sizes studied drops to about
0.05-0.1 eV. This correlation is indicative that at these three magic sizes there is an electronic shell
closing which is not consistent with that predicted by the jellium model.
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