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Abstract

A tight-binding (TB) hamiltonian for calcium is built with a high precision parametrization technique based on density
functional calculations of the energy bands and the total energy at various lattice volumes. The new set of TB parameters is
appropriate to study phenomena under pressures as high as 20 GPa. Specifically, both the metal to nonmetal transition at 4 GPa
and the structural transition fcc to bec at 19 GPa are well reproduced. These transitions and several static properties are in
excellent agreement with experiments. Phonon frequencies, plasmon energy, melting temperature and the coefficient of thermal
expansion were calculated with a molecular dynamics scheme of this TB hamiltonian.

© 2002 Elsevier Science Ltd. All rights reserved.
PACS: 71.20. — b; 71.30. + h; 83.10.Tv; 65.40.De

1. Introduction

One of the interesting characteristics of alkaline-earth
metals is their behavior under pressure. Calcium and stron-
tium undergo a structural transition from fcc to bcc when
high pressure is applied while the opposite is observed in
other metals. Alkaline-earth metals are much softer than the
transition metals or noble metals. Additionally, the mechan-
ical properties of the various alkaline-earths are notably
different from other metals as demonstrated by experiments
under pressure [1—-4]. In strontium, the structural transition
from fcc to bee takes place at 3.5 GPa whereas in calcium it
is observed at 19 GPa when the volume is reduced by about
50% [1,3]. At lower pressures, both calcium and strontium
display a metal-nonmetal transition in which the metallic
character is lost. This transition is characterized by a gap in
the density of electronic states (DOS) at the Fermi energy.
Because of this phenomenon, calcium and strontium are
known to be semimetals. Altmann and Cracknell [2] first
predicted this anomaly in the electrical conductivity of
calcium shortly before the metal-nonmetal transition was
observed experimentally [1].
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Theoretically the metal-nonmetal transition in calcium
was studied within the augmented plane wave (APW)
method [5,6]. These authors were able to locate the nonme-
tal state of calcium through a careful calculation of the DOS
at the Fermi level, which was found to be almost zero at a
pressure close to 5 GPa. In 1974, Mickish et al. [7] used a
linear combination of localized atomic-orbitals within the
density functional formalism to calculate the electronic
bands of calcium and essentially duplicated the APW results
[6] by confirming the metal-nonmetal transition. The struc-
tural transition fcc to beec was not addressed in these studies.
For calcium this transition was first analyzed within the
frame of total energy calculations using a full potential line-
arized APW approach (LAPW) [8]. Years later the study
was carefully revisited [9] by obtaining the Bain path or
continuous shape deformation of the fcc unit cell into the
bee unit cell within the LAPW scheme.

In this work, we are interested in obtaining a set of para-
meters for the tight-binding (TB) hamiltonian of calcium
that would allow a correct description of properties under
high pressures. TB offers the possibility to study a wide
range of material properties with a considerably less expen-
sive computational investment than any density functional
approach. However, the parametrization of this model is
crucial to adequately reproduce the desired phenomenon.
At present there is no set of TB parameters that would
allow a good representation of the calcium properties
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under high pressures. The best existing TB parameters [10]
are appropriate for studying the properties under normal
conditions but fail at high pressures.

Our strategy for finding the TB parameters for calcium is
to fit them to density functional results of the band structure
and total energy of both fcc and bec lattices at different
lattice constants. This is the strategy that has been followed
in the NRL-TB method [10]. In this work, we extend the
validity of the TB parametrization for calcium given in Ref.
[10] by expanding the range of lattice constants to be
commensurate with pressures at which the density of the
material is increased by a factor of two. This extension
provides the capability to further explore dynamical proper-
ties of calcium under pressure using TB molecular dynamics
(TBMD) and to explore thermodynamic and mechanical
properties not attainable earlier. To implement our strategy,
we performed APW calculations of the energy bands and
total energy of both fcc and bec lattice structures for a wide
range of lattice constants. These calculations include a soft-
core scheme that considers the 3p® electrons as valence
electrons. Results from our first principles calculations are
in agreement with earlier studies [6,9], although we report in
this work a more precise value of the transition pressure for
both the metal-nonmetal transition and the structural transi-
tion from fcc to bec.

The organization of this paper is as follows. In Section 2 a
description of the NRL-TB model is provided with a
summary of the APW calculations. Comparison of energy
bands and total energy obtained with both methods using the
new parametrization is given in Section 3. The elastic prop-
erties at normal conditions are also described in Section 3.
Section 4 provides results concerning the metal-nonmetal
transition and the fcc to bee structural transition obtained
with the newly parametrized TB and with APW. Section 5
describes the TBMD calculation of several dynamical quan-
tities such as the mean square displacement as a function of
temperature, the thermal expansion coefficient and the
phonon frequencies at selected points in the irreducible
Brillouin zone (IBZ).

2. The tight-binding parametrization for calcium

Density functional calculations on calcium were carried
out with the APW method in the muffin-tin approximation.
This approximation is very reliable for cubic structures. At
high pressures when the volume of the unit cell is
compressed up to 50%, it is crucial to consider the 3p elec-
trons as valence electrons. Here we used the Hedin—Lundg-
vist [11] prescription for exchange and correlation potential.
These calculations were performed using 89 and 55 k-points
in the IBZ for fcc and bee crystals, respectively. For the
calculation of the fcc DOS we used a grid of 505 k-points
in the IBZ to determine precisely the values of the Fermi
energy Ep. The APW total energy and electronic band

results are then used to derive TB parameters by a nonlinear
least square fit [10].

The NRL-TB method is based on the Slater—Koster (SK)
approach [12] and is described in Refs. [10,13]. This scheme
includes s, p and d atomic orbitals to form a 9 X 9 matrix
representation of the TB hamiltonian. The k-independent
parts of the SK hamiltonian matrix elements are considered
as parameters. Due to the symmetry of the atomic orbitals,
the number of distinct parameters in the SK hamiltonian is
reduced to four on the diagonal and ten nondiagonal matrix
elements per neighbor. In our work, we used a nonorthogo-
nal basis set of atomic orbitals [14]. For this case the nondia-
gonal terms of the overlap matrix increase the number of SK
parameters to 24. This approach is more desirable since it
provides a larger number of parameters for fitting the energy
bands and total energies. The diagonal elements of the SK
hamiltonian are known as the on-site integrals s, p, ty, and e,.
The nondiagonal terms of the SK hamiltonian are the
hopping integrals sso, spo, ppo, pp, sdo, pdo, pdmw, ddo,
dd and dds.

In the standard SK scheme the on-site, hopping and over-
lap integrals are designated according to the atomic neigh-
borhood considered in a specific calculation (first, second or
third neighbors) [14]. The advantage of the NRL-TB
method resides in these integrals being approximated by
functionals of the intersite distances R;; from one atom at
site i to atoms within the lattice located inside a large sphere
centered at that specific atom. The SK integrals become
environment dependent. The on-site integrals are

0/(p) = ay + Bip™” + yp*” + 8p° (D

where [ is a running index identifying the four different
integrals. The quantities «;, 3;, y; and 6, are parameters to
be fitted, and p is the local atomic density around each atom
i in a given lattice structure

pi=D e "IFRy) 6)
i

Here A is a parameter to be fitted and the cutoff function

defining the spatial range of every SK integral is

1

FC(R) = 1+ eZ(R*Ro)/R (3)

where Ry = 31 a.u. such that 19 shells around every atom are
included in the case of the fcc lattice and 25 shells in the
case of the bcc lattice. Therefore, a radius of 34 a.u. for
interactions around each atom is ensured, considerably
larger than the typical value for transition metals of
16.5 a.u. [10]. This choice was made due to the fact that
calcium has a much larger lattice parameter than the transi-
tion metals.

The 10 hopping integrals and the 10 nondiagonal
elements of the overlap matrix are expressed as polynomials
of the intersite distance R

H,y(R) = (a, + bR + c,yROe “RF(R) “)
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Table 1

TB parameters in Eqs. (1) and (4). The parameter in Eq. (2) is A = 1.146303. Units are Bohr for distances and Ry for energies

187

On-site a B y 8
s 0.047454 10.624 —524.24 18204
p 0.13165 43364 —1581.2 26017
the 0.15103 5.5955 -9.2518 —14375
e 0.15103 5.5955 -9.2518 —14375

Hopping a b c d
sso 111.77 —16.812 —1.5181 1.041
spo —5.3099 1.4725 —0.0069709 0.77799
ppo —12.263 0.84196 0.35675 0.82343
ppm 20683 -1110.3 —372.56 1.4587
sdo 1.1854 —0.3931 0.024818 0.61351
pdo 8.9528 —1.4176 —0.079699 0.82313
pdm 0.33013 —0.023055 —3.4477x 10 % 0.56197
ddo —35.701 14.191 —1.5885 0.9379
ddm —2.8139 1.0469 —0.061129 0.75552
dd —1247.1 611.7 -71.613 1.2531

Overlap sso 7.4856 —0.82752 29023 %103 0.6591
spo 44090 —8673.5 2478 1.3096
ppo 57.107 —243 1.995 0.87409
ppm 647.98 —32.747 0.17389 1.2207
sdo —175.12 27.776 1.6147 0.98484
pdo —38.525 11.817 —-0.8192 0.80281
pdm —5.6075 0.40331 —-0.076214 0.87489
ddo —4.151 1.549 —0.084458 0.76831
ddm —52850 18197 —1607 1.3065
dds 7.028 x 10° —2.0927 x 10° 15490 1.5242

where m is a running index identifying the 20 differ-
ent integrals of the hamiltonian and overlap matrices.
In this expression a,,, b,,, ¢,, and d,, are parameters to be
fitted.

Under this scheme we fitted 97 parameters entering in
Egs. (1), (2) and (4) to the energy bands and total
energy of 13 lattice structures: eight fcc calculations
with lattice constants ranging from 8.0 to 11.5a.u.,
and five bcc structures with lattice constants ranging
from 7.2 to 8.4a.u. A nonlinear fit yielded an rms-
error of 0.5 mRy for the total energy of the 13 struc-
tures. The corresponding error on the six lowest energy
bands of each of the 13 lattice structures ranged
between 9 mRy for normal volumes and 18 mRy for
the highly compressed fcc structure. Table 1 contains
all fitted parameters. Worth noting is that several SK
hopping integrals are quite long-range functions. For
example, spo, ppo and pdo have significant values
even at R=16a.u.

It should be pointed out that when calculating the
total energy and energy bands with APW, we used the
scheme in which pseudo-one-electron states are defined
under the following prescription. The total electron
energy of the solid in terms of the electron density

n(?) is
Eln()] =2 f(Ep — €)& + Gln()] =2 f(E: — €)e;
)

where € are the Kohn—Sham eigenvalues, G contains
the remaining terms depending on n(r) and Ep is the
Fermi energy. The summation runs over all electron
states such that their occupation number f(Er — €;) satis-
fies the sum rule

Ne =23 f(Er — &) ©)

with N, being the number of electrons in the system.
Pseudo-eigenvalues € are defined by

€ = € + GIn(MIN, (O]

and the total energy is then expressed as a sum of one-
electron pseudo-eigenvalues as shown in Eq. (5). This
expression is simpler to compare to the TB total energy
description. The energy bands on which the fit of the
TB parameters was carried out were built with these
pseudo-eigenvalues.
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Fig. 1. Total energy vs. unit cell volume. Solid curves are APW
calculations (fcc and bec). Dotted (fec), dashed (bec) and long-
dashed (sc) are TB calculations.

3. The tight-binding total energy and energy bands of
calcium

Fig. 1 shows the total energy as a function of the unit cell
volume for fcc, bee and simple cubic (sc) structures. Solid
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Fig. 2. Energy bands for the fcc lattice with @ = 10.54 a.u. Solid
lines are APW results and dashed lines are the TB results. The Fermi
level is shifted to zero.
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Fig. 3. Density of states for the fcc lattice with @ = 10.54 a.u. Solid
lines stand for APW calculations and dotted lines for the TB calcu-
lation. The Fermi level is shifted to zero.

curves illustrate the APW calculations and dashed lines
correspond to the TB energies. As is typical in the local
density approximation, the calculated equilibrium lattice
constant ap=9.98 a.u. is smaller than the experimental
value of 10.54 a.u. The TB value is ay=10.11 a.u.. The
figure shows clearly that the TB parametrization is in excel-
lent agreement with APW in a wide range of unit cell
volumes. The previous TB parametrization [10] breaks
down at volumes of about 170 a.u. As a proof of the robust-
ness of our TB hamiltonian, Fig. 1 shows the total energy
curve of the sc lattice. As expected, the energy of this struc-
ture is far above the fcc and bec energies.

Energy bands and DOS for the fcc lattice at the experi-
mental lattice constant are plotted in Figs. 2 and 3 where the
Fermi energy has been shifted to zero. Our TB parametriza-
tion gives excellent agreement with the APW results on both
the energy bands and the DOS as seen from the figures.
Specifically, the TB occupied band width Eg — E(I"))
(mostly s character) is 283 mRy. The d band width Ey, —
Ey, is 252 mRy. Bandwidths are very clearly seen in the
decomposition of the DOS plotted in Fig. 3. These widths
are in excellent agreement with the corresponding APW
values of 286 and 243 mRy, as well as with the experimental
value of 285 mRy for the width of the occupied band [15].
The correlation energy is fundamental when determining
these bandwidths. For such reason the agreement between
APW and experiment for the bandwidth of the occupied
band is excellent. Both TB and APW display comparable
DOS at the Fermi energy N(Ef) of about 21 and 20 states/
Ry/atom, respectively.

Using the values of N(Ef) at equilibrium (10.4 states/Ry/
atom for TB and 12 states/Ry/atom for APW) the TB esti-
mate of the electronic specific heat coefficient is 2.2 mJ/mol/
K? to be compared with 2.9 mJ/mol/K? from both APW and
experiment with an enhancement factor of 1.39 [14].

The comparison of our TB and the APW energy bands
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Elastic constants and their comparison with experiments and other calculations

189

B (GPa) CII_CIZ (GPa) Cll (GPa) C12 (GPa) C44 (GPa)
This work (TB) 17.2 8.3 22.7 14.4 21.0
Experiment [17] 214 9.6 27.8 18.2 16.3
Experiment [18] 10.7 8.0 16.0 8.0 12.0
Ref. [19] 12.0 7.0 16.7 9.7 14.2

and DOS holds extremely well at compressed unit cell
volumes consistent with high pressures. For example, the
TB bandwidths of the occupied band and of the d band are
338 and 337 mRy at 4 GPa. These values change to 341 and
423 mRy at 19 GPa. The corresponding APW bandwidths
are 324, 326 mRy at 4 GPa and 344, 405 mRy at 19 GPa
showing the excellent agreement of TB with APW energy
bands.

Generic similarities between the energy bands of calcium
and ytterbium are often cited in the literature. However, we
note that while the spin—orbit coupling in ytterbium
removes the accidental degeneracy of the first and second
bands along the WQL direction of the IBZ [16], for calcium
the degeneracy is not lifted because the spin—orbit coupling
is too weak. The latter statement is supported by calcula-
tions at various pressures where we extended the APW
approach to include spin—orbit coupling with a spin—orbit
coupling constant of 1 mRy.

Elastic properties are listed in Table 2 for the fcc lattice at
the experimental lattice constant. As seen from these results,
the TB values compare very well to the experimental bulk
modulus and C; — Cj, constants. The individual calculated
values of Cy;, Cy, and Cyy are not as close to experiment as
desired. However, this is not surprising for a metal as soft as
calcium for which there is no agreement even between

24
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Fig. 4. Density of states at the Fermi energy vs. pressure. APW fcc
(black circles), APW bec (black triangles), TB fcc (open circles),
and TB bcc (open triangles).

different experiments [17,18]. Since experimentally only
three elastic constants are reported, the relation B = (C; +
2C1,)/3 was used to obtain the bulk modulus. Only a full
representation of the valence electron potential such as in
LAPW rather than the muffin-tin description of APW
improves the calculated values of Cy. The table includes
published results obtained with LAPW [19].

4. The metal-nonmetal transition and the structural
transition

The signature of a metal is its DOS at the Fermi energy
N(Eg). Under pressure, the N(Ep) of calcium steadily
decreases to reach zero around 4 GPa, whereas the most
stable lattice structure continues to be fcc. This character-
istic identifies the material as a semimetal in which a metal—
nonmetal transition occurs when the material is driven away
from normal pressure and density. Based on finding the
pressure at which N(Eg) becomes zero, both our TB and
APW approaches predict a transition pressure of 4 GPa.
Here the pressure is calculated from

Viesired )2 E(V)
P—Py=— v 8
0 JVO 6V2 ( )

where V stands for the volume of the unit cell and V, is this
volume at equilibrium of the total energy E(V) depicted in
Fig. 1 for either the fcc or bee lattices. At V), the pressure is
Py =0.

The phase portrait in the N(Eg)—P plane shown in Fig. 4
summarizes our results. Increasing the pressure above
normal pressure to about 4 GPa we observe that N(Ef) is
larger than zero for the fcc lattice reassuring the metallic
character of calcium (black dots are APW and circles are
TB). However, above 4 GPa the N(Er) remains zero up to
about 19 GPa. In contrast, the N(Eg) of the bcc lattice is
basically constant in this pressure domain (black triangles
are APW and white triangles are TB). A clear distinction of
two regions, below and above 4 GPa highlights the metal
nonmetal transition.

In earlier APW calculations [6] the search was not as
extensive and a transition pressure of 5 GPa was estimated.
Experimentally, the transition is reported in terms of the
ratio between the lattice constant at a given pressure and
the lattice constant at normal pressure. The experimental
ratio a/ag at the transition is 0.875 [1]. Our value of 0.896
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Fig. 5. Bain-path at two different pressures.

differs by 2.4%. Other studies have reported similar esti-
mates for this ratio: 0.93 [6], 0.82 [7], 0.943 and 0.866 [20].

As pressure is increased beyond 19 GPa the fcc lattice is
no longer the most stable structure but rather deforms stea-
dily into the bec lattice. Inspection of the phase portrait of
Fig. 4 shows that in addition to the structural transition,
there is a discontinuous change in N(Eg) from zero to
about 9 states/Ry/atom at about 19 GPa. Therefore, at this
pressure calcium clearly undergoes a transition to the bcc
structure as well as to a metallic state. Our conclusion is in
agreement with the most recent experiments [4] and earlier
calculations [9]. Fig. 5 shows TB results at two relevant
pressures of the Bain deformation path in which a body-
centred tetragonal unit cell with lattice constants a, ¢
continuously deforms as the ratio c¢/a changes. When c/a =
1 the structure is bce and when c/a = JE the lattice is fcc.
As seen in Fig. 5, at 4 GPa where calcium is nonmetallic, the
Bain path has its minimum at the fcc lattice. At 20 GPa the
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Fig. 6. Energy bands of the bcc lattice at 15.2 GPa within TB.

60.0 | TOmALDOS :’_(l
= Q
s o
@) (]
g oo 3
>
€ s00f !
{0 3
= <
2 00 00 3
§ 100 F p , o6
0.0 S - = 00
60 1os
30 | i :
00 L N ‘ 21 0,0
0.4 02 0.0 0.2 0.4
ENERGY (Ry)

Fig. 7. Density of states of the bcc lattice at 15.2 GPa
(a=6.973 a.u.). Solid lines are APW results and dotted lines are
TB results.

bce lattice structure becomes a minimum and calcium is
metallic again. To produce Fig. 5, a mesh of 322 k-points
in the IBZ was used. Our TB results are in good agreement
with previous LAPW results [9].

In Figs. 6 and 7, the bcc TB energy bands and DOS (APW
and TB) are shown for bcc calcium under 15 GPa
(a=6.973 a.u.). At this pressure the volume of calcium is
compressed to almost half the normal volume. The
compressed lattice structure for these two figures is different
than any of the compressed bce structures used in the fit of the
TB parameters showing the transferability of the TB hamilto-
nian. The bee energy bands are quite stiff although increases in
pressure still enlarge the bandwidths. For example, the width
of the occupied band is increased from 311 to 345 mRy when
pressure is increased by 15 GPa. The TB DOS compares very
well to APW results even at these compressed volumes.
Therefore, the crucial change at the structural transition pres-
sure of 19 GPa is the dramatic transition from the nonmetallic
state in which calcium is fcc to the metallic state in which
calcium becomes bee under higher pressures.

Implications of these pressure induced transitions
impact other properties such as the Drude plasmon
energy. The plasmon frequency (25 (Ep) =
(4w/3)e’ N(Eg)V*(Er) (v(Ep) = velocity at Ep) presents a
sharp pressure dependence. At the equilibrium fcc
volume the calculated plasmon energy is 1.8eV
(APW) and 19eV (TB). This energy remains zero
between 4 and 19 GPa while the material is nonmetal and
acquires a value of 4.0 eV when the crystal undergoes the
structural transition to bce. The decomposition of the DOS
in the various symmetry components is also of interest. At
low pressures the main contribution to N(Eg) is given by
both the p and d-like states which contribute by 50 and 46%,
respectively. At pressures above the structural transition, when
the material is bcc, the contribution of d states is about 73%
whereas the p-like states contribute only 17% and the remain-
ing states are s-like.
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Table 3
Phonon frequencies at high symmetry points of the IBZ

k Frozen phonon (THz) TBMD (THz) Experiment [17] (THz)
A L 4.76 4.61 3.66
T 3.81 2.61 2.54
X L 8.20 8.03 4.52
T 5.30 5.23 3.63
L L 4.51 4.16 4.61
T 3.33 2.79 2.36

5. Tight-binding molecular dynamics simulations

The TB model has been coupled with molecular
dynamics (TBMD) in various different schemes. In
this work, we adopted the implementation put forward
by Kirchhoff and co-workers [21]. The ionic equations
of motion were solved within the velocity form of the
Verlet algorithm with a time step of 1.5fs. All calcu-
lations were performed with computational cells
containing 108 atoms, consistent with the fcc lattice
unit cell translated three times in each cartesian direc-
tion.

At normal temperature and pressure, we calculated
dynamically the longitudinal (L) and transverse (T)
phonon frequencies at the symmetry points A, X and
L of the IBZ. The velocity autocorrelation function as
a function of the position of each lattice site in the unit
cell was obtained such that peaks of its Fourier trans-
form identified the desired phonon frequencies. Table 3
reports our results. Additionally, we obtained static esti-
mates of these same frequencies within the frozen
phonon scheme [22]. Frequency estimates and the
experimental values from neutron diffraction [17] are
contained in the same table. The A and L modes are
in very good agreement with experiment. However, the
X modes are systematically higher close to the IBZ
edge. We believe that this discrepancy is related to
the lack of ability that TB displays to reproduce the
Cy elastic constant and to the small number of atoms
considered in our calculation.

Following the Lindemann criterion [23] to estimate
the melting temperature, we calculated the mean square
displacement (MSD) of calcium atoms in the fcc lattice
at normal density and at temperatures ranging from 290
to 1200 K. The MSD averages increase smoothly as a
function of increasing temperature. At about
1180 = 120 K the MSD average is about 15% of the
nearest distance in the fcc lattice. At this temperature,
according to Lindemann criterion, the calcium fcc
lattice undergoes melting. Our estimate is in excellent
agreement with the experimental value of 1115 K [24].
The error we report for the average associated to the
temperature corresponds to twice the standard deviation.

The linear thermal expansion coefficient defined by

1 [0V
@ W(ﬁ)m ©)

was also calculated at normal pressure Py. This requires
MD simulations for several densities at a given
temperature. For each unit cell volume V the average
pressure P(V) was computed at various temperatures
between 300 and 600 K to identify the volume V, at
which the pressure is 1atm. As a second stage, we
choose a volume V, slightly larger than V; and calculate
the average pressure at various temperatures between
300 and 600 K. Interpolation of these values gives a
linear Py(T) dependence from where « is estimated as
(15+7)x10°K™".  The experimental value is
21X 107K ™' [24]. The agreement is reasonable consid-
ering that calcium is a very soft metal.

6. Conclusions

In this paper we have generated a new set of TB
parameters that allow to study the properties of calcium
at pressures as high as 20 GPa and temperatures above
1500 K. Previous parametrizations only permitted
studies close to normal thermodynamic conditions. We
have shown that the new TB model reproduces well the
metal nonmetal transition at 4 and 19 GPa describes
correctly the structural transition fcc to bcc in which
the material becomes metallic again. The elastic proper-
ties, electronic specific heat, phonon frequencies, and
melting behavior obtained with the new TB model are
all in very good agreement with experimental observa-
tions. The TB hamiltonian constructed in this work is
expected to apply in other problems such as in the
validation of many-body potentials [25,26].

The findings of this work for alkaline-earth interactions
carry over to other length scales. The long range character of
the calcium—calcium forces added to a very hard core is a
characteristic responsible for the peculiar cluster growth
sequence that has been predicted for both calcium and stron-
tium [25,27]. For example, Ca; is a twinned pentagonal
bipyramid with two capped faces. This is a very different
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structure than the icosahedron obtained for most metals. The
long range characteristic of the interactions are also respon-
sible for the softness of these alkaline-earth metals.
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