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The structure and aggregation kinetics of three-dimensional clusters composed of two different monomeric
species at three concentrations are thoroughly investigated by means of extensive, large-scale computer simu-
lations. The aggregating monomers have all the same size and occupy the cells of a cubic lattice. Two bonding
schemes are considere@ the binary diffusion-limited cluster-cluster aggregati®DLCA) in which only
the monomers of different species stick together, @mdhe invading binary diffusion-limited cluster-cluster
aggregation(IBDLCA) in which additionally monomers of one of the two species are allowed to bond. In the
two schemes, the mixed aggregates display self-similarity with a fractal dimedsitmat depends on the
relative molar fraction of the two species and on concentration. At a given concentration, when this molar
fraction is small,d; approaches a value close to the reaction-limited cluster-cluster aggregation of one-
component systems, and when the molar fraction isd@}.becomes close to the value of the diffusion-limited
cluster-cluster aggregation model. The crossover between these two regimes is due to a time-decreasing
reaction probability between colliding particles, particularly at small molar fractions. Several dynamical quan-
tities are studied as a function of time. The number of clusters and the weight-average cluster size display a
power-law behavior only at small concentrations. The dynamical exponents are obtained for molar fractions
above 0.3 but not at or below 0.2, indicating the presence of a critical transition between a gelling to a
nongelling system. The cluster-size distribution function presents scaling for molar fractions larger than 0.2.

PACS numbes): 61.43.Hv, 82.70.Dd, 82.70.Gg, 05.10.Ln

I. INTRODUCTION tion x of speciedA interacts with the molar fraction (4x) of
speciesB with a sticking probabilityp,g=1, whereas the

The structure and kinetics of aggregating colloids haveparticlesA or B do not stick to other particles of the same

been extensively studied, particularly in the past two decadegPecies. The probabilities am,,=0 and pgg=0. In the
[1-3]. Surprisingly, the theoretical study of irreversible ag- S€cond model, the invading binary diffusion-limited cluster-

gregation between polydisperse particles and, more impoUSter aggregatioiBDLCA), a molar fraction x of in-
tantly, between colloids of two or more different species isV‘"‘d'ng impuritiesB that do not stick between themsel\_/es
scarce [4—7. Compared to the aggregation of one- (pgg=0) but stick to theA monomers, alters the aggregation

; ! : f the A monomers. In this caspaa=1 andpyg=1. The
component systems, the coagulation of particles bel_ongmg t\gvork of Meakin and Djordje\iic{4?/21/?jdressesp£;gregation in
WO Or more Species IS a more common process in natrgy_monomer systems containing particles and clusters of

For example, in geophysmal systems there are m[nerals.@izes with size-independent mobility at one fixed volume
which one of thg constituents undgrgogs aggregation whilg, tion [the diffusion coefficient was taken &3(s)~s®
the others remain stable. In the biological realm there argyit, 5=0]. In their work, several functionalities are associ-
many examples, such as the antibody-antigen reaBbin  4teq to the two monomers, and the cage- By is similar to
which we have the existence of different aggregating speciegp| CA. These were pioneer simulations using 10000
The kinetics of the growth processes with different chemicalnonomers at a volume fraction of 0.0048. The work of Stoll
compounds by itself is also of interest in aerosol scid8te  and Pefferkorri6] referred to heterocoagulation of two types
where composite aerogels are investigated as novel nanosf colloids with different aggregation abilities. Kinetic re-
cale materials for chemical, electronic, and optical applicasults from these authors pertain to very small systems of only
tions [10]. In other systems such as mixtures of stable and.000 monomers at a volume fraction 0.0034. Because of the
unstable colloids, the aggregation of the unstable componesimall system size, the aggregation times studied were too
is strongly hindered by the presence of the stable particles. khort to extract reasonable conclusions concerning the dy-
would be of interest to study the dynamics of the aggregatiomamical quantities. One of their cases corresponding to equal
of the unstable componefi1]. reactivity for all cluster sizes is equivalent to thg+ Bg
The present study investigates the three-dimensional agase of Meakin and DjordjeVvig]. The difference between
gregation behavior of a system constituted of two types othese two works resides in the criterion to account for the
colloidal monomersA and B of identical size. Two models time associated to sequential selection of monomers or clus-
are introduced. The first model is the binary diffusion-limited ters that are moved during the simulation. In our work we
cluster-cluster aggregatigBDLCA), in which a molar frac- have generalized the dynamical approach by allowing size-
dependent mobilities, we have scaled up the system to about
half a million initial monomers, and we have considered
*Electronic address: agustin@fenix.ifisicacu.unam.mx three different volume fraction€.01,0.03,0.06 By allow-
"Electronic address: eblaiste@gmu.edu ing size-dependent mobilities to the various clusters
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[D(Rg)~ 1Ry, whereRy is the radius of gyration of the tem is not monodisperse any longer. Clusters of size two
clustel, the kinetic and time-dependent behavior of the bi-move slower than the monomers. To take into account this
nary mixture quantities is more realistit2] and prone to effect, a cluster selected at random will move only if a ran-
provide a better theoretical framework for comparison withdom numbeiX, uniformly distributed between¥X<1, sat-
quantities measured by experimentalists. By scaling up thesfiesX<<D(Ry)/D nax, WhereD(Ry)=1/R, is the diffusion
simulations to contain two orders of magnitude more par-coefficient for the selected cluster. Every time a cluster is
ticles, we are ensuring that the aggregates are fractals deelected, the Monte Carlo time is incremented biJl/
scribed with one dimensionality as well as increasing thavhereN( is the number of clusters at that time, regardless of
aggregation time to reach a regime where dynamical expowhether the cluster would have been moved or not. As the
nents and scaling are clearly detected. Finally, by consideraggregation proceeds and when two clusters encounter each
ing several volume fractions we are able to predict the deether, they stickforming a larger clusteror not depending
pendence of structural and dynamical quantities of oumpon the type of monomers touched in the encounter. This
BDLCA and IBDLCA models on volume fraction, which is process is continued until the clusters in the aggregation bath

another important experimental varialpl3,14. organize themselves into a floc, a short time before gelation.
This paper is organized as follows. Section Il describes

the algorithm used to perform the simulations of the BDLCA Ill. STRUCTURAL PROPERTIES OF BDLCA

and IBDLCA models and includes the expressions used to AND IBDLCA AGGREGATES

compute the particle-particle reaction probabilities. In Sec.
[l we demonstrate that the clusters generated in the simula- The structure of a diffusion-grown aggregate is usually
tions at the various concentrations used are fractal, using eharacterized by one unique fractal dimensibn, However,
recently developed criteriofil5—18§. This section contains this might not be the case, and multifractality might be at
our results for thed; as a function of molar fraction of spe- issue[15]. An aggregate is statistically self-similar if its
cies A and as a function of volume fraction. In Sec. IV, we structural characteristics are the same at all length scales of
report our results for the kinetic and dynamical quantities,observation, sufficiently larger than the size of the individual
including the time dependence of the different moments otomponents. If this is the case, then only one fractal dimen-
the cluster-size distribution, the associated exponents, arglon is enough to describe the fractal characteristics of the
the scaling of the function describing the temporal change ofggregates in the final floc. Because of the complex nature of
the number of clusters of a given size. Finally, Sec. V conthe reaction between monomers in our binary mixed aggre-
cludes this work with a discussion and several concludingyates, it is instructive to show that the clusters generated in
remarks. BDLCA and IBDLCA display single scaling. This property
has not been investigated before.
To study the self-similarity of the clusters, we used the
Il. MODEL AND METHODS method based on a moment analysis of the radii of gyration
A system composed of a mixture bf, andNg different ~ Of these cluster§16-18. In this method the distribution of
colloidal monomers of equal size is distributed at random orfh€ cluster radii of gyration is generated for clusters of sizes
the cells of a simple-cubic lattice. Three concentratignsf ~ larger thans=>50 collected from the 50 simulations at each
theN,+ Ng monodisperse unaggregated particles are consigt@lué of ¢ andx. The moments of the distribution are de-
ered: 0.01, 0.03, and 0.05, corresponding to cubic box size¥1€d as
of 360, 250, and 210, respectively. Therefore, at each con-
centration the system contained about 470000 monomers. 1 a 0
The molar fraction of thé monomersx=N,/(Np+Ng), is op(Rg) = n 521 |Rgis_<Rg>| ' @)
a variable in our simulations. For each of the concentrations

and each molar fractior, 50 simulations were performed. wheren; is the number of clusters in tti¢h bin and(Ry) is

The aggregatio'n process SFartS by selec_:ting at randomtﬁe mean radius of gyration in that bin. Note that,
monomer of specieé or B. This monomer is then moved pid; 1/d; . .
one lattice spacing on a random direction in the cubic lattice.” NG f RgiSNNis - Therefore, if the system is character-
A diffusion coefficientD o is characteristic of the motion of ized by one fractal dimension, then the ratio ofdpj to
either monomerg\ or B. When monomers A and B become In(a) should be equal tp/q for all bins. A deviation from
nearest neighbors on the lattice, they stick with probabilitythis value indicates multifractality. Our results for BDLCA
pag=1. On the other hand, monomeBslo not stick among and IBDLCA are shown in Tables | and Il for different mole
themselves even if they are nearest neighbors on the lattideactions x. As seen from the tables, the calculated ratios
(pes=0). Two different situations may arise when two In(op)/In(oy) are indeed equal t@/q. The uncertainties
monomers are nearest neighbdisThe A monomers do not listed in these tables correspond to twice the standard devia-
stick, paa=0, in which case the aggregation is callddary  tion. From this analysis we conclude that the clusters are
diffusion limited cluster-cluster aggregatidiBDLCA); (ii) self-similar at the three concentrations considered in this
the A monomers stick between themselvpga=1, and the  work.
model is calledinvading binary diffusion-limited cluster- Having shown that the clusters are self-similar at all con-
cluster aggregatior(|BDLCA). centrationsp and mole fractions, we present results for the

The aggregation proceeds when two monomers encountétactal dimension in BDLCA and IBDLCA at different con-
and stick forming a mixed clusteAB of size s=2 in  centrations and mole fractions. There are various methods to
BDLCA and IBDLCA, or a dimerAAin IBDLCA. The sys- determine the fractal dimensiaty [14,18. In this work we
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TABLE I. BDLCA. Slopes of the Inr;, vs Ino plots for dif- TABLE II. IBDLCA. Slopes of the Ino, vs Inoy plots for
ferent values op andq at #=0.01 and 0.05, and=0.2 and 0.5. different values ofp andq at ¢»=0.03, andx = 0.2, 0.5, and 0.9.
Only clusters containing more than 50 monomers were considere@®nly clusters containing more than 50 monomers were considered.

$=0.01 $=0.05 x=0.2 x=0.5 x=0.9

x=0.2 x=0.5 x=0.2 x=0.5

1.50£0.01 1.510.03 1.56:0.02
2.00-0.03 2.01-0.06 2.06:0.05
2.50-0.05 2.52-0.11 2.51-0.09
1.33£0.01 1.34£0.02 1.34£0.02
1.67£0.02 1.670.04 1.670.03
1.25-0.01 1.25-0.01 1.25-0.01

1.50:0.02 1.50:0.01 1.52:0.04 1.48:0.02
1.99-0.04 1.99-0.02 2.04-0.07 1.95:0.05
2.49-0.06 2.49-0.04 2.56:0.11 2.42:0.08
1.33:0.01 1.330.02 1.35-0.02 1.32:0.02
1.6740.02 1.66-0.01 1.69%0.03 1.64-0.03
1.25-0.01 1.25-0.00 1.26:0.01 1.24-0.01

g o s~ obh w|oT
AW WNDNDDN| O

g o b~ o~ w | T
AW WNNDDN| QO

(RLCA) value of the one-component syst¢h8] in the limit
of smallx, while atx=0.5 it becomes close to the diffusion-
use the mass-size reIationsh‘Ra~Nl’df, where 1d; is the limited cluster-cluster aggregatig®LCA) value of the one-
slope of the log-log plot ofR, versusN. To avoid large component systen{13]. For example, for the casep
fluctuations due to very small clusters, in the determination=0.01, we haved;=2.07 atx=0.2 andd;=1.91 at x
of d¢, clusters containing more than 50 monomers were con=0.5. These values are comparable to the reported values
sidered. [13] of 2.12 and 1.89 for the RLCA and the DLCA, respec-
llustrated in Fig. 1a) is the fractal dimension for tively. The behavior for smalk is expected because the
BDLCA as a function ofx for the three concentrationp  small number ofA monomers are being consumed rapidly,
=0.01, 0.03, and 0.05. Data points represent averages oviiing inside the clusters surrounded mostly Byparticles,
50 simulations and the error bars are twice the standard deffectively reducing the probability for reaction between col-
viation. As was observed in previous studies of the oneliding clusters, which eventually reaches zero. In fact, an
component systerfil3,14], the fractal dimension increases equivalent way to see this phenomenon is to look at the
with concentration¢. Additionally, in BDLCA the depen- probability of encounters between monomers of diffeent
dence on molar fractiom is symmetric and the figure illus- alike) species. Figure (b) shows the probability of encoun-
trates only half of the range of possible molar fractions. Inters between monomers of the two species as a function of
that range the fractal dimension decreasexg ereases. In the aggregation time for the four molar fractiowrs This
fact, for each¢, the fractal dimension approaches a valueprobability is a measure of the reactivity in the aggregation
close to the reaction-limited cluster-cluster aggregatiorbath and is defined as

No. of reactive encounters betweéh and B monomers

Pr(AB)= total number of encounters

@

The strong decay of the probability for encountABas the The fractal dimension as a function of the mole fraction of
reaction proceeds in time and the molar fractiodecreases theA species for IBDLCA is plotted in Fig.(d) for different

is C|ear|y seenin F|g(b) However’PR(AB) remains fa|r|y volume fractions. A behavior S.imilar .tO that of BDLCA is
constant in time fox,= 0.5 and therefore at this molar frac- observed. Overall, the fractal dimension increases with con-

tion the binary mixture behaves much like a one-species sy _en'irallt(ijqn. This modelhis qﬁt sgrfgxatriclz andffos, the
tem with very small hindrance effects due to the second sp ractal dimension reacnes the value of the one-species

: Notice thaPo(AB) i i alent t Hocti tase. Otherwise, the fractal dimension becomes close to the
cies. Notice tha rR(AB) is no equivalent 10 arliecive ) ca jimit of the one-species system as the mole frackon
probability defined as 2(1—x), which would keep constant g decreased. The values of the fractal dimension are some-

during the aggregation process. Instead, even at the onset gy |arger than those in BDLCA because of a different cor-
the processinitial times), Pr(AB) is smaller than that value relation between reactive particles along the aggregation pro-
because of a kinetic correlation that develops along the agsess. In fact, this difference is apparent even at the beginning
gregation process. The correlation along the reaction timef the process because the probability of reacting encounters
increases, especially for small molar fractions, in such a wayr(AB) is now supplemented by the probability of encoun-
that Pg(AB) decreases sharply at the larger times. ters betweerA particles:

b (A No. of reactive encounters between two monomers 3
RIAA)= total number of encounters ' @)




PRE 61 CLUSTER-CLUSTER AGGREGATION IN BINARY MIXTURES 553

The total reaction probability is nowg(AA)+ Pr(AB), molar fractionsx. Figure 3 shows plots of these quantities for
which is illustrated in Fig. &) as a function of time. BDLCA at ¢=0.01 and different molar fractions Except
Summarizing, with respect to structural characteristicsfor x=0.2, these quantities display an exponential behavior
BDLCA and IBDLCA are very similar ak=0.5, BDLCA is  at the early times of aggregation, followed apparently by a
symmetric, whereas IBDLCA is not. At low; d; is higherin  power-law temporal regime. However, at higher concentra-
IBDLCA indicating the possibility to form slightly more tions ¢=0.03 and 0.05 the crossover to the power-law re-
compact clusters. gime was not discovered. The IBDLCA model shows a simi-
lar behavior folN.(t) andS,(t) for #=0.01 as illustrated in
Fig. 4. Our simulations end just before gelation, from where
we can infer that the total aggregation time increases as
decreases. Overall, the aggregation time in IBDLCA is a bit
The kinetics of aggregating systems is usually studied byarger than in the BDLCA ax=0.2 and they become equal
monitoring the time evolution of the mean number of clus-atx=0.5.
ters N.(t) or its inverse the number-average cluster size The time dependence of dynamical quantities such as
Sa(t), the weight-average cluster sigg(t), and the cluster- N¢(t) and S,(t) is characterized by dynamical exponents.
size distribution functiorNg(t). The variation with time of ~The exponentg’(x) andz(x) are obtained as the slopes of
N(t) andS,(t) for the BDLCA and the IBDLCA models the linear regions in the log-log plots ®¥.(t) and S,(t)
was investigated at the three concentratignand different

IV. KINETICS OF THE AGGREGATION PROCESS
AND SCALING
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FIG. 1. The BDLCA model(a) Fractal dimension vs the molar FIG. 2. The IBDLCA model(a) Fractal dimension vs the molar
fraction x at ¢=0.01 (circles, 0.03 (diamond$, and 0.05(tri- fraction x at ¢=0.01 (circley, 0.03 (diamondg, and 0.05(tri-
angles. (b) Reaction probabilityPg as a function of time akp angles. (b) Reaction probabilityPg as a function of time aip
=0.01 andx=0.2 (circles, 0.3 (squarep 0.4 (triangles, and 0.5 =0.01 andx=0.2 (circles, 0.3 (squares 0.5 (asterisky and 0.7
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FIG. 3. BDLCA: (a) Mean number of cluster(t) as a func- FIG. 4. IBDLCA: (a) Mean number of clustemd.(t) as a func-
tion of time. (b) Weight-average cluster si&,(t) as a function of  tion of time. (b) Weight-average cluster si&,(t) as a function of
time. Both plots are fogp=0.01 and various molar fractions time. Both plots are fop=0.01 and various molar fractions

(Figs. 3 and 4 respectively. Values for the exponents areforming small clusters of different sizes. Among these, there
given in Table Ill for the two models, fok>0.2 and¢  are several fully saturated clusters that do not react during
=0.01. No exponents could be determined at higher concenhe remaining aggregation time. The lifetime of these nonre-
trations, which is a known problem even for the one-active clusters with sizes o§=7,12,13. .. etc. becomes

component systems due to finite concentration effet®. infinite, and for that reason we call them “metastable clus-
Notice that while the exponertdoes not depend ox, the

exponentz’ depends slightly om. The fact thatzis constant
means that clusters of approximately equal sizes are gener.
ated at the same rate irrespective of the valug, efhile the — _
change ofz’ with x means that the rate of decay of clusters is__

decreasing with increasing BDLCA IBDLCA
Both BDLCA and IBDLCA at aboutx=0.2 display a

TABLE lIl. Values of the dynamical exponenisandz’ as a
ction of the molar fractiorx for BDLCA and IBDLCA at ¢

crossover to a different aggregation regime apparent at the z z z z

three concentrations under study. Let us emphasize that 0.3 1.43 1.73 1.34 1.77
while the dynamical exponenigx) andz’(x) were detect- 0.4 1.49 1.67 1.39 1.69
able forx>0.2, they cannot be obtained far<0.2. This 0.5 1.48 1.62 1.37 161
abrupt change of behavior can be better explained in terms of 0.6 1.37 1.56
the cluster distribution functioMNg(t). Figure 5 shows the 0.7 1.38 1.50
log-log plots ofNg(t) as a function of time fox=0.2 and 0.8 1.36 1.50
x=0.3. Inthe case of=0.2, at the early time stages most of 0.9 1.37 1.50

the A particles are surrounded b particles, eventually
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FIG. 6. Scaling ath)=0.01 andx=0.5 at 50 different timega)
BDLCA,; (b) IBDLCA.

in Fig. 5b) for x=0.3 and it was not obtained for=0.25
] either. This would mean that=x.~0.2 (between 0.190 and
e 0.195 for¢p=0.03) is a critical point separating two different
3 regimes of aggregation: for>x., reactive clusters lead to
1 gelation, and forx<x., the metastable clusters hinder and
3 inhibit gelation. Meakin and Djordjevi¢4] predicted this
3 transition, based on observations of a small sys{8if00
monomers According to their interpretation, the system
5 crosses over from a critical to a tricritical behavidr9].
Morover, since our simulations consist of systems of about
470000 particles, we were able to show that the exponent
FIG. 5. Time evolution of clusters of siz=1,2,7,12, and 13 IS fairly constant in one regime of aggregation, and is not
for BDLCA at (a) x=0.2, (b) x=0.3. defined in the other regime. This is a sharp transition,
whereas in Ref[4] because of the small system size, a
ters.” The specific sizes of the metastable clusters is a chasmooth transition was obtained. In light of our results, we
acteristic of the simple-cubic lattice model used in this simu-can ensure that a phase transition exists in three dimensions
lation, where each monomer has a functionality of 6similar to a percolation transitiof20] where the mole frac-
(forming six bonds at mostSystems with different function- tion x is related to the occupation probability, the order pa-
alities were not studied here, although lower functionality oframeter is the gel fractiotfraction of monomers in the gel
2 and 4 have been studied in the context of polynjéts and other relevant quantities are the mean cluster size and the
Formation of metastable clusters occurs alsoxer0.2. correlation length(spatial extension of the connectivity
However, in these cases they are not abundant enough as[®i].
play a significant role in changing the dynamical behavior of Finally we have checked for scaling of the cluster distri-
the system. Whex~0.2, we observe a sharp depletion of bution functionNg(t) ~s™2f[s/S,(t)]. This is important be-
dimers and trimers which accrue the metastable clusters ircause it has been detected experimentally for the one-
creasing their number. The rate of formation of these metacomponent systeri22]. The occurrence of scaling means
stable clusters is faster than its rate of annihilation giving riséhat whens?Ng(t) is plotted as a function 0§/S,(t), the
to a bimodal distribution of metastable clusters of a givendistributions collapse onto one master curve for all times in
size, as seen in Fig.(&. At the late aggregation stages the the scaling regime. Figureg&@ and b) show the collapse
bath is full of metastable clusters, being one of the dominanof data for BDLCA and IBDLCA at different time windows.
causes for the aggregation process to slow down and thehe shape of (s/S,) is the same for the two models at all
reaction probability to go to zerfsee Figs. (b) and 2Zb)].  values ofx>0.2 and for the three concentratiors Early
For x=0.18, the bimodal distribution flattens to a plateau attimes were not included in the scaling to remove transients
long times, indicating the permanent presence in the aggref the initial distribution. Similarly, late times were not in-
gation time of a third species, namely unreactive metastableluded because of the statistical fluctuations due to fewer
clusters. On the other hand, the bimodal behavior is not sedarge clusters. The scaling includes cluster sizess5.500

N; ()
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also for statistical purposes. Worth noticing is that Meakingarded as symmetric whereas IBDLCA is asymmetric. In
and Djordjevic[4] did not find good collapse for their data both models, the fractal dimension increases with increasing
because of the apparent curvature in®j€t), the small size concentrationp. At the lowest concentration considered here
of the system, and the short time scales that this limitatior{ ¢ =0.01) and fox>0.2, the exponert associated with the
entails. weight-average cluster siZ,(t) and the exponerz’ asso-
ciated with the number-average cluster siggt) are de-
V. CONCLUSION fined. The first exponent remains fairly constant wtile
) ) ) ) presents a slight decrease with increasingNo power-law

In this paper, we have investigated the influence of thg,gphayior was obtained for higher valuesdaf notwithstand-
compositionx and the volume fractiorp on the structural ing that scaling in the formNg(t)~s 2f[s/S,(t)] was
and dynamical properties for aggregation in binary colloidakq,nq 1n IBDLCA saturation is reached whenever the invad-
mixtures. The BDLCA model represents a considerable iming monomers are a minorityx&0.5), i.e., the fractal di-

provement on the simula.tion approach of previous studie§,ansion and the dynamical exponentndz’ tend to some
[4,6] (two orders of magnitude more monomers, longer ag¢onstants, close to the characteristic values of the one-

gregation times, better statisticsAdditionally, the kinetic component systenfd3]. In both models the point~0.2 is
behavior is better suited for comparison to experiments beg, \ng g pe a critical point separating the gelling from the
cause clusters exhibit size-dependent mobilities. The 'nvaﬁongelling regimes
sion binary diffusion-limited aggregation, IBDLCA, is a '

newly introduced model that presents several differences
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