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Abstract. A Hamiltonian is proposed to describe the coupling between vibration and rotation
in a molecular system. The time behaviour of such a system exhibits both regular and irregular
motion for different energies and different values of the coupling parameter. There is a
dramatic manifestation of the transition between the two types of dynamics that define parametric
regions of regular and irregular behaviour. The Lyapunov exponent, phase portraits, Poincaré
sections and power spectra are calculated. The computer simulations show that the vibrational
anharmonicity favours the regular behaviour of the system.

1. Introduction

The study of complex irregular dynamics may be said to have started with the work of the
French mathematician J H Poincaŕe at about the turn of the century. Although qualitative
dynamics has been known to exist for a long time, its importance for a broad variety of
molecular applications began to be appreciated only within the last decade. There are two
main lines of research in this rapidly developing field: investigation of dissipative systems
and research on Hamiltonian chaos. Concurrently, there has been enormous interest both
within the mathematical community and among engineers and scientists to apply simple
Hamiltonians to the description of a ‘few’ selected degrees of freedom relevant in complex
systems. The field continues to develop rapidly, and its applications in material sciences
are growing because of the fascinating changes in the time evolution of molecular systems
[1–3].

Several Hamiltonian systems with two degrees of freedom are known to exhibit a
transition from regular to chaotic motion as the energy of the system is increased. This
is the case of the well studied two-dimensional Henon and Heiles system [4]. However,
fewer studies have been undertaken which carefully examine the role played by the coupling
parameters in a Hamiltonian system while the energy is kept constant. To be able to control
these coupling parameters is one of the novel approaches of this technology.

In this paper we present a two-degrees-of-freedom Hamiltonian system which is suitable
for the description of molecular vibration–rotation processes. In this model we assume that
the two relevant variables of the motion are represented by a stretching vibration coupled
with the rotation around an axis perpendicular to the vibrational displacement that passes
through the oscillator equilibrium position. The coupling energy isV0(1 − cosnq) [5]
where the potential barrierV0 is a function of the amplitude of vibrationr and q is the
angle of rotation. In this paper, we considered the case ofn = 4, which is representative
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of a fourfold symmetry molecule or of a cubic trapping site. The time evolution of this
model system is obtained by solving Hamilton’s equations of motion numerically. Two
parameters, the vibrational anharmonicity constant and the rotation–vibration constant, are
changed along a surface of constant energy to observe the behaviour of a regular–chaos
transition. We observe that the system is characterized by two chaotic regions separated by
a regular region. The transition between the regions depends strongly on the value of the
coupling parameters. It is important to understand how energy is shared and accommodated
between the various active degrees of freedom and locked into the system. This is the thrust
of the present study.

Hamiltonian models of this type are encountered in the literature for various values
of n. A similar two-dimensional Hamiltonian system has been reported [6] although
the authors did not consider the correlation between coupling constants and total energy.
Other published work deals with the molecular vibration and rotation motions separately
[7, 8]. Neglecting the interaction between the rotational and vibrational parts is justified
with molecules in their ground rotational and vibrational states. When the molecules are
externally excited (by light, for example) or when the system is at high temperatures,
vibration and rotation are non-separable, as was shown recently [9].

2. Model Hamiltonian

A novel nonlinear Hamiltonian, suitable for the discussion of the coupling between the
vibration and rotation of a two-degrees-of-freedom molecular system is chosen to be

H = 1
2(ṙ2 + r2 + r2q̇2) + kr4 + gr4(1 − cos(4q)) . (1)

The dynamical variables are: the vibration displacement from equilibriumr; the oscillator
velocity ṙ; the rotation angleq and the angular velocitẏq. Energy is given relative to the
equilibrium energy of the system with zero angular momentum. The first three terms of (1)
represent a harmonic oscillator with frequencyω = 1 and massm = 1 that rotates in a plane
as a result of the vibration [10]. The fourth term indicates the anharmonicity in the vibration.
The fifth term is responsible for the coupling between the vibration and the rotation degrees
of freedom. This last term represents an anisotropic displacement of the system from
equilibrium and accounts for changes in the angular momentum. Let us note that a cubic
anharmonicity is absent in (1) to preserve the symmetry in the oscillation amplitude. In
fact, the cubic anharmonic correction is zero for crystals with central symmetry. In quantum
mechanical approaches to molecules, the anharmonic corrections to the harmonic energy
usually include both cubic and quartic anharmonic terms. However, up to second order in
perturbation theory, the total anharmonic correction to the energy depends quadratically on
the cubic term and linearly on the quartic term.

A common model to account for hindrance of a planar rotation assumes [5] that the
rotor has a potential energy

V = V0(1 − cos(nq)) (2)

whereV0 is the height of the barrier andn is a degeneracy index identifying the number
of symmetric equivalent saddles and valleys encountered by the rotor. The coupling term
in our model Hamiltonian resembles this model. However, in our case the system rotates
only when the amplitude of vibration is non-zero. Therefore,V0 is not constant in time
but rather becomes a function of the dynamical variabler. As stated in (1), in our model
V0(r) = gr4 whereg measures the strength of the coupling.
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The following two cases are discussed in the next few paragraphs:k = 1 andk = 0. In
the first case the vibration is anharmonic and in the second case the vibrator is harmonic.

The dynamical variables arer, q, ṙ, q̇. To solve Hamilton’s equations of motion in these
variables is inefficient. It is more convenient to search for a transformation of coordinates
such that the oscillating terms in the Hamilton equations will not be present. We propose:

x = r cos(q) y = r sin(q) . (3)

The Hamiltonian in (1) is thus transformed to(x, y) coordinates:

H = 1
2(ẋ2 + ẏ2) + 1

2(x2 + y2) + k(x2 + y2)
2 + 8gx2y2 (4)

and the Hamilton equations are

x + 4k(x3 + xy2) + 16gxy2 = −ẍ

y + 4k(y3 + yx2) + 16gyx2 = −ÿ .
(5)

Verlet’s third-order finite difference method [11] was used to solve the above equations
numerically with a time step of 10−3. The numerical stability is validated by checking that
the energy is kept constant.

3. Chaotic behaviour

The initial conditions of the dynamical variables needed to solve the equations of motion
define different domains of total energy of the system. We have studied in detail cases for
which the initial condition for anglesq = nπ/2 (n = 0, 1, 2, . . .) zeroes the coupling term
of the Hamiltonian regardless of the value ofg. Most of our simulations were performed
with the initial condition (x, y, ẋ, ẏ) = (0, 1, 2, 3) which leads to an energy surface
E = 7 for k = 0 andE = 8 for k = 1. This range of energies corresponds to an oscillator
which can acquire amplitudes of vibration as large asr = 4.

Once the energy domain is fixed, for both casesk = 0 and k = 1, we solved the
equations of motion for various values of the coupling parameterg. Once the trajectories
were available it was possible to determine whether the behaviour was chaotic or not as
a function of the parameter. To do this we investigated the behaviour of the Euclidean
distance in phase space [12] between a parent trajectory and another trajectory obtained by
slightly perturbing the parent trajectory at the initial timet = 0:

d(t) =
√

(x0 − x1)2 + (ẋ0 − ẋ1)2τ 2 + (y0 − y1)2 + (ẏ0 − ẏ1)2τ 2 (6)

where the set(x0, y0, ẋ0, ẏ0) corresponds to the parent trajectory,(x1, y1, ẋ1, ẏ1) represents
the perturbed trajectory andτ is the time unit. The initial perturbation applied to the parent
trajectory is denoted byd0 and its value is set tod0 = 3 × 10−5.

When the Euclidean distance between trajectories at short times behaves linearly with
time, then the motion is said to be regular. However, for certain values of the coupling
parameterg, the motion of our system departs from the linear behaviour and displays a
growing exponential behaviour at short times. This dynamical instability is characteristic of
chaotic motion and the short time behaviour can be characterized by the leading Lyapunov
exponentλ defined by

lim
d0→0

d(t)/d0 = exp(λt) . (7)

Our system is very sensitive to the value of the coupling parameter and we varied it over
a wide range of values for both casesk = 0 and 1. A typical ln(d(t)/d0) versus time
plot is given in figure 1 fork = 0 andg = 0.2. The value of the Lyapunov exponent is
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Figure 1. Time dependence of ln(d/d0). The slope of the linear region is the Lyapunov
exponent. The data correspond tok = 0, g = 0.2.

obtained from the slope of the best interpolated line (broken) at short times and is always
positive. The dynamical correlation is lost at longer times, aboutt = 20 for the case
shown in figure 1. We attribute the fluctuations in the short-time regime to the influence of
non-leading exponents.

It is found that the Lyapunov exponent increases asg increases fork = 1. However,
this behaviour is no longer valid fork = 0, as shown in table 1. The standard deviation in
the values ofλ are obtained from a sample of 10 different randomly perturbed trajectories
all of which are obtained from the parent trajectory perturbed by the samed0.

Table 1. The Lyapunov exponent versusg.

k g λ

0 0.75 0.97± 0.10
0.5 0.53± 0.07
0.4 1.31± 0.04
0.2 0.48± 0.06
0.1 0.57± 0.08
0.05 0.51± 0.05

1 2.5 0.96± 0.04
1.0 0.46± 0.05
0.75 0.185± 0.03

−0.375 0.33± 0.04
−0.5 1.22± 0.03
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4. Transition between regular and chaotic motion

Based on the previous analysis, and as a function of the parameterg, it is possible to
define two thresholds between regular motion and chaotic motion. Below a thresholdgmin,
g < gmin, the system is chaotic with positive Lyapunov exponent. Above the threshold,
g > gmin, the system behaves regularly and the Euclidean distance between trajectories is
a linear function of time. Asg is increased further within the rangegmin < g < gmax,
the motion remains regular. However, ifg is increased beyondgmax, then the motion
becomes chaotic again. This is depicted in figure 2. An almost continuous range of
values ofg was considered to produce this figure. The regular regiongmin 6 g 6 gmax

shrinks as the total energy of the system increases. At even higher energies the system is
chaotic at almost all values ofg. On the other hand, at very low energies the system is
chaotic only if |g| is very large. In fact, forE = 1.5, the regular region spans between
−1.5 < g < 5.

Figure 2. The transition region of chaos–order–chaos for (a) k = 1, E = 8 and (b)
k = 0, E = 7. Parent trajectories were initiated with the same set of variables for (a) and
(b).

Qualitatively, the motion of the system is quite similar to that of an intermittent rotor
decoupled from an anharmonic vibrator when the strength of the couplingg is small (regular
region) because the rotation is modulated by a shallow cosine function. The main effect of
a small perturbation is to reverse the direction of rotation every time thatr = 0. However,
if the coupling strength is large, the system rotates or librates hopping between directions
in a disconcerted fashion.

The harmonic vibration case obtained by settingk = 0 was also considered. We kept the
same initial conditions as for the anharmonic case (k = 1) such that the total energy is now
E = 7. We perform an analysis similar to that presented above illustrated in figure 2(b).
The region ofg < −0.005 is unstable because there are no minima of the potential energy.
The region of regular motiongmin < g < gmax is noticeably narrower than in the case
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k = 1, indicating that the anharmonic termkr4 favours the regularities of the system. The
absence of vibrational anharmonicity shrinks the regular region ofg. A similar observation
was reported in the literature in which nonlinearities extend the range of existence of the
periodic regime [13].

Let us now discuss the behaviour of other properties of the system as a function of
g. For the case wherek = 1, figures 3(a)–(d) illustrate our results for two values of the
coupling: g = −0.375 andg = −0.15. The two left-hand figures (a), (c) depict the phase
portrait (q, r) and the two right-hand figures (b), (d) correspond to Poincaré sections for
q̇ = 0. As is evident from the phase portrait and Poincaré section, the system is chaotic for
g = −0.375. Asg is decreased the motion becomes regular, as shown in (c) and (d) for
g = −0.15. In this second case the system is not chaotic and although its phase portrait
is complex it exhibits regularities. Figure 3(d) shows that the points in the section are
compressed to one line indicating that the system is nearly integrable [14].

Figures 4(a)–(d) show the power spectra ofr(t) and q(t) for the casek = 1.
Consistently, each power spectrum displays a set of well defined frequencies forg =
−0.15 when the dynamics is regular. As chaos sets in (g = −0.375), the power
spectrum converts to an irregular series of broadened lines emerging from an extended
background.

Figure 3. Phase portraits and Poincaré sections fork = 1 and differentg values. (a) Phase
portrait forg = −0.375; (b) Poincaŕe section forg = −0.375; (c) phase portrait forg = −0.150;
(d) Poincaŕe section forg = −0.150.
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The time evolution of the dynamical variables in our system is visualized qualitatively
by a vibrating mass that undergoes a highly perturbed planar rotation around its equilibrium
position. The rotation dies out when the mass passes through the equilibrium position.
For the harmonic case,k = 0, figure 5 illustrates the time dependence ofr(t) for various
values of the couplingg, whereas figure 6 shows the time series ofq(t). As is apparent in
figures 5 and 6, the dynamical variablesr, q display a periodic behaviour for small values
of the coupling, i.e.g 6 0.0025. However, forg values outside the regular region indicated
in figure 2(b), i.e. g = 0.025, beats have formed in ther(t) series and extra frequencies
break the periodic pattern. When the coupling is even larger,g = 0.055, r(t) and q(t)

present a complicated evolution. While vibrating the particle rotates and hops between
the four angular minima, much as in a rotational diffusion motion although here energy is
conserved. For strong coupling,g = 0.125 (top part of figure 6), it is apparent that for
significant lengths of time the rotation is reduced to a vibration in one of the wells but then
a hop brings the particle to a different angular position from where it continues a hindered
rotation before being trapped into a new vibrating mode. In figure 7, we show the changes
on the power spectrum ofq as the value ofg is decreased. A behaviour similar to the
anharmonic case (k = 1, figures 4(b), (d)) is revealed. One distinct frequency is present
only when the couplingg is in the regular region (g = 0.0025). Asg increases many other
frequencies erupt into the spectrum.

Figure 4. Power spectra ofr andq for k = 1 and differentg values. (a) Pr(ω) for g = −0.375;
(b) Pq(ω) for g = −0.375; (c) Pr(ω) for g = −0.150; (d) Pq(ω) for g = −0.150.
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Figure 5. Time evolution ofr for k = 0 and different values ofg.

Figure 6. Time evolution ofq for k = 0 and different values ofg.
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Figure 7. Power spectra ofq(t) for k = 0 andg decreasing from 0.055 to 0.0025.

5. Conclusion

The time evolution of the dynamical variables corresponding to a rotating–vibrating particle
were analysed in detail. The Hamiltonian representing this system may be used to model two
relevant degrees of freedom in molecular systems. We found that for fixed energy domains,
changes of the coupling constant between vibration and rotationg generate two types of
motion, regular ifgmin < g < gmax and irregular otherwise. Furthermore, the regular region
in the parameter space (k, g) is wider if the anharmonic correctionk is present, indicating
that the anharmonic term favours the regularities in the dynamics of the system.
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