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The classical motion of a Ii"ee particle that scatters elastically from ring-bounded 
cavities is analyzed nunaerically. When the ring is a smooth circle the scattering 
follows a regular and periodic pattern. However, for rings composed of N scat- 
refers the Ilow is irregular, of Lyapunov type. The Lyapunov exponent is found 
to depend logarithmically with N, which is consistent with the theoretical 
derivation of Chernov for polygon-shaped billiard systems. The escape time 
from cavities bounded by a ring of N separated scatterers is demonstrated to 
follow a geometric distribution as a function of the aperture size. An empirical 
scaling is proposed between the Lyapunov exponent, the escape time, and N. 
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1. I N T R O D U C T I O N  

The s tudy of  classical t ra jector ies  encounte red  in scat ter ing p rob lems  is 
in teres t ing because  chaot ic  behav io r  is observed  regardless  of  the elastic, 
inelastic, or  exchange charac te r  of  the scat ter ing mechanism.  ~'2~ Several  
p h e n o m e n a  in physical  systems have to deal  with par t ic les  that  enter  a 
scat ter ing region and  are ei ther  t r apped  there or  reside in the cavi ty  a cer- 
tain t ime before escaping.  This  class of  p rob lems  have been a p p r o a c h e d  
from classical,  semiclassical ,  and  q u a n t u m  poin ts  of  view. 13'4~ F r o m  the 
scenario of  c o m p u t e r  s imulat ions ,  the s tabi l i ty  of  the classical t ra jector ies  of  
the scat tered par t ic les  is crucial  in de te rmin ing  rel iable t ime averages which 
require  a good  sampl ing  of  phase  space in a m o d e r a t e  c o m p u t a t i o n a l  time. 
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When the motion is periodic or quasiperiodic, only restrictive regions of 
phase space are covered. ~5'61 If instead the trajectory samples the phase 
space in an apparently random manner, the system is ergodic and the 
computational time needed to achieve good averages is attainable. 

A set of semiclassical problems can be modeled by considering the 
classical counterpart of a free particle trapped in a cavity. ~7 91 The motion 
of the particle is confined by the cavity and determined by the cavity shape. 
Well-known statistical models of molecular cavities, or trapping sites in 
solids, consist of systems where moving particles wander inside a region 
surrounded by spherical scatterers which represent either atoms or 
molecules. A Lorentz gas is an example. In two dimensions it is possible to 
design fully closed cavities by packing circles along a boundary. A particle 
undergoing elastic collisions trapped in such a 2D cavity defines a par- 
ticular class of dynamical systems called billiard systems. ~1~ 

Irregular scattering (IS) problems have recently been revived in con- 
nection with their quantum counterpart and their analysis based on ran- 
dom matrices I 1~.7-91 and level fluctuations. Furthermore, it has been stated 
that whenever IS is observed, the quantum description is such that: (i) the 
nearest neighbor distribution of the eigenvalues of the trapped particle is a 
Wigner function; (ii) at a given energy the distribution of the modulus 
squared of the quantum S-matrix elements between two action states is 
Poissonian; and (iii) the width of the energy autocorrelation function is 
proportional to the inverse of the escape time. 

In this paper we address statistical issues of a billiard that exhibits 
irregular scattering (IS). The model is a point particle trapped in a cavity 
with walls composed of N circular reflecting scatterers. In Section 2, 
isoenergy trajectories are analyzed as a function of the number of scatterers 
forming the ring-bounded cavity. In particular, we compare the Lyapunov 
exponents obtained from the trajectories to an asymptotic formula of 
Chernov, I~tl In Section 3 we discuss the case of particle moving in a cavity 
surrounded by reflecting scatterers that have gaps between them. A generic 
feature common to a large class of chaotic scattering problems is that P(t), 
the probability that the trajectory stays within the confined region for at 
least the time t, is given by 

P(t) ~e -" '  (I) 

when t is large. However, the probability for short times is dependent upon 
the geometry of the scattering region. Results in this work for cavities 
surrounded by rings of scatterers corroborate Eq. (1). This is analyzed in 
Section 3 and compared to a probability model developed from heuristic 
reasoning. Section 4 gives a brief conclusion. 
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2. FREE PARTICLE MOTION INSIDE A RING OF SCATTERERS 

When a classical point particle moves freely inside a two-dimensional, 
perfectly reflecting cavity, periodic trajectories can be generated from cer- 
tain initial conditions. For example, a five-point star trajectory is depicted 
in Fig. la. A slight perturbation of 10 -2 in the x component of the initial 
velocity causes the trajectory to precess around an axis passing through the 
center of the circle as depicted in Fig. lb. The motion is now quasiperiodic. 
Quantities will be reported in units of R for distances and number of colli- 
sions for time. 

The trajectory deviates with respect to the perfect star as time evolves. 
This deviation can be best measured by monitoring the time evolution of 
the Euclidean distance d(t) in phase space between the periodic trajectory 
(parent) and the perturbed one 1~2~: 

d(t)=((Xo-Xp)2 W(y,,-yp)2 W(v.,.o-v.,p)2"cz q-(Vyo-Vyl,)ez2) I/2 (2) 

where the o represents the variables of the original parent trajectory and p 
those of the perturbed trajectory. Hence r is the unit of time. For small 
initial deviations, d(t) is a linear function of time indicating the regular and 
quasiperiodic character of the motion. This is regular scattering. 

The motion of the same particle in a two-dimensional, ring-bounded 
cavity composed of N perfectly reflecting and touching circular scatterers is 
shown in Fig. 2 for N = 5, 9, and 20. The ring boundary allows for initial 
conditions that give rise to trivially periodic trajectories. An example for 
N = 5 is illustrated in Fig. 2a. For many other initial conditions the trajec- 
tory is irregular and tends to cover densely the allowed phase space. The 
behavior is depicted in Figs. 2b-2d, where trajectories were followed during 
equal times. 

Ring-bounded cavities exhibit irregular scattering. To quantify this 
statement, the distance d(t) between one parent trajectory and a set of 
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Fig. 1. Trajectories of a free particle confined to move in a smooth circular cavity. (a) Initial 
conditions satisfy Eq.(2); (b) Initial conditions as in (a) plus a 10 -2 perturbation in 
the speed. 
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Fig. 2. Trajectories of a free particle contined to cavities bounded by an N-scatterer ring. 
(a) Five-scatterer-ring boundary; (b) same case as (a), but the initial conditions differ by 
a slight perturbation of the speed; (c) trajecttory in nine-scatterer ring; (d) trajectory in a 
20-scatterer-ring cavity. 

perturbed ones was calculated from Eq. (2) for cavities with different values 
of N. Two types of perturbations were considered. In the first, the x com- 
ponent of the velocity was altered by 1 0  - 6  . In the second perturbation 
scheme, the magnitude of the velocity remained fixed, but its direction was 
perturbed at random within an angular amplitude of 10 -3 rad. In both 
cases the instability is of Lyapunov type. Figure 3 illustrates the linear 
growth of In d(t) as a function of time using the first perturbation scheme 
mentioned above. The various lines in Fig. 3 show a change in the slope as 
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Fig. 3. Distance between parent and perturbed trajectories as a function of time (given in 
number of collisions). Solid lines are the fits leading to the Lyapunov exponent. Numbers on 
top indicate the number of scatterers in the ring cavity. 
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a function of number of boundary scatterers N. In all cases the Lyapunov 
exponent 2, the slope of the lines, is positive. This indicates that the motion 
is chaotic and irregular. No major differences were observed in the values 
of the Lyapunov exponent when calculated from the second perturbation 
scheme. 

The numerical precision achievable in our computers limits the size of 
the smallest perturbation. Because of this limitation, the exponential 
correlation is only visible during a small number of collisions. This is 
clearly seen in Fig. 3, where every curve is stopped at that maximum time 
after which the exponential correlation is lost. For equal initial perturba- 
tions, the exponential correlation is lost faster as N, the number of scat- 
terers, increases. This effect allowed us to carry calculations with N only up 
to about 50. For larger N the correlation between the two trajectories is 
lost in less than three collisions, making it impossible to extract a numeri- 
cal value for 2 with the method described here. 

The ring of N scatterers might be used to model the roughness of a 
boundary/12.13~ Within the limits of numerical validity of our simulations, 
Fig. 4 illustrates the change in )~ due to the number of scatterers N in the 
ring boundary. The best functional fit to the numerical values can be cast 
in the following expression: 

2=1.125 In (1.~N25) (3) 

which is depicted by the broken line in Fig. 4. This formula is reminiscent 
of a theoretical formulation due to Chernov. ~1~ His example concerned a 
chain of identical touching semicircles placed along a polygon-shaped 

Fig. 4. 
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Lyapunov exponent as a function of the number of scatterers in the right-bounded 
cavity. Dashed line corresponds to the fit proposed in Eq. (4). 
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billiard. In the limit of an infinite number of semicircles, N ~ oo, Chernov's 
formula expresses the entropy (equal in this case to the largest Lyapunov 
exponent) as 

h = cl ln (N/c2)  (4) 

which matches the empirical functional form (3) found in our study. 
Summarizing, we show that the roughness of a ring boundary that 

confines a particle is responsible for quantitative changes in IS. When no 
roughness occurs (plain circular cavity), the motion is regular, periodic, 
with no chaos. When the ring that bounds the cavity is rough (N> 3), the 
motion is irregular, chaotic, and the flow is of Lyapunov type. This 
irregular motion might be associated with an indirect coupling between the 
particle degrees of freedom induced by the boundary shape. ~'3-~5~ Usually 
it is difficult to model this coupling by a Hamiltonian. 

3. ESCAPE T I M E  FROM A BROKEN R I N G - B O U N D E D  CAVITY 

In most scattering problems the moving particle enters a scattering 
region and resides within it only a finite time. This residency time is 
referred to as the scattering delay time 13"4) or escape time. 17) The class of 
ring-bounded cavities described in the previous section may be generalized 
by considering an open ring configuration with gaps between the scatterers. 
This situation is typical in three-dimensional cavities surrounded by hard- 
sphere scatterers. 

Consider a plane geometry where small disks are arranged along the 
circumference of a large circle and separated by equal gaps g. We calculate 
numerically the escape time of a moving particle inside the cavity as a func- 
tion of the gap size and of the number of scatterers. We define the gap g 
in relative terms as 

D - 2r 
g - - -  ( 5 )  

D 

where D is the distance between the centers of two contiguous scatterers of 
radius r located along the ring boundary. This g corresponds approxi- 
mately to the ratio of the total aperture along the boundary ring to the 
entire boundary perimeter. Figure 5 shows a histogram of the escape time 
from a five-scatterer ring for 104 trajectories. The different trajectories were 
started from the same position, with the same energy, but random initial 
directions of motion. As is apparent from the histogram, the distribution is 
exponential, Poisson type, except at very short times. The short-time 
behavior is specific to the geometry of the cavity. A Poisson distribution is 
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Fig. 5. 
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Distribution of  the escape times based on 104 trajectories for a particle confined in 
a five-scatterer ring cavity with g = 0.0204. 

characteristic of a chaotic scattering mechanism in which there is no 
correlation between the gap and the dynamical variables. In Fig. 5 the scale 
of time shows the number of collisions with the boundary before escape. 

The numerical process was repeated for different relative gap sizes. As 
expected, the smaller the gap, the more dominant the short-time behavior, 
and therefore the Poisson-like distribution is washed out. Under these 
circumstances it is best to obtain the numerical average of the escape time 
as a function of the gap size. Figure 6 illustrates the calculated averages 
(dots) of the escape time as a function of the gap size for the case N =  5. 
It is found that the average escape time decreases exponentially as the gap 
is increased. This behavior is the same irrespective of the value of N. 

The results shown in Fig. 6 suggest a probabilistic interpretation based 
on the following arguments. Assume an infinite two-dimensional box with 
an opening of size g on one of the walls. A particle moving ergodically and 
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Fig. 6. Average escape time as a function of the relative aperture g for a five-scatterer ring 
cavity. Dots correspond to the simulation and the line represents Eq. (7) with ~t = 1.067. 
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uniformly inside the box has a probability p = ~g to escape without collid- 
ing with the wall that has the opening and a probability 1 - p  to collide 
with the other wall. The probability for the particle to escape after exactly 
m collisions is then 

P,,, = p(1 - p )  .... ' (6) 

The expected value of the escape time r,, (measured in number of collisions) is 

<r,,> = <m> = me,,, = - =  (7) 
,,, = ~ p c~g 

The proportionality parameter c~ is related to the geometry of the wall close 
to the aperture and thus it depends on N. In the ideal case of a planar wall, 
c~--- 1. However, our rough boundary is made of convex pieces irrespective 
of the number of scatterers. The value of cc is obtained by equating the left- 
hand side of Eq. (7) to the calculated averages given in Fig. 6. Results of 
this fit give rise to the solid line in Fig. 6 for the case N = 5. As the bound- 
ary becomes rougher, N--* co, the parameter e is found to reach a satura- 
tion value as shown in Fig. 7. This behavior is not trivial. For the type of 
cavities considered in this work, the empirical dependence shown in Fig. 7 
is a property of the cavity shape that characterizes the roughness of its 
boundary. 

We have presented some cases of classical IS for which the quantum 
mechanical counterpart needs to be formulated. We have provided accurate 
results of the escape time (or delay time) in these IS cases. Universality 
relations of trajectories characterized by their Lyapunov exponent ;t have 
been discussed in the literature. (16) Relevant to this work is the determina- 
tion of the Hausdorff dimension dr of classical trajectories. For  the class of 

Fig. 7. 
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Dependence of the parameter a of Eq. (7) on the number  of scatterers in the ring- 
bounded cavity for g = 0.02042. 
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problems discussed here d/ = 2. For  some other applications of free particle 
motion the dimensionality of the trajectory might have values lower than 
two, as is the case in zeolites, c17~ where d / .= l .  From our results it is 
possible to establish an empirical relation connecting the roughness 
(represented by N), the Lyapunov exponent 2, and the escape time r,, in an 
N-scatterer cavity with a fixed aperture g: 

dr In(N) = r,,2 - In(b) (8) 

where b=0.1786 for g=0,0204.  This equation indicates the correlation 
between the ring roughness and the dynamical variables for 3 < N < 50. In 
fact, ring-boundary confinement has been used to simulate the mean square 
displacement of small molecules and ions diffusing in zeolites. The role of 
structural disorder is important in zeolites, where 10- and 12-scatterer rings 
have been used to model silicalite and faujasite. I t8~ Both of these situations 
correspond to rough boundary conditions with IS of Lyapunov type. 

4. C O N C L U S I O N  

In conclusion, we have analyzed the classical dynamics of a class of IS 
problems in two-dimensional N-scatterer ring-bounded cavities. The 
dynamical motion is irregular when the ring is rough ( N >  3). The flow is 
of Lyapunov type. We have demonstrated that the Lyapunov exponent 
increases logarithmically with N. In addition, we have found that the mean 
escape time from ring cavities with gaps is proportional to the inverse of 
a typical gap aperture. The Hausdorff dimension of the trajectories is con- 
firmed to be two. From empirical results we propose the scaling of Eq. (8) 
between the number of scatterers, the expected value of the escape time, 
and the Lyapunov exponent. 
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