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Abstract

Classical Molecular dynamics simulation of silicon cluster growth (up to 1000 atoms) have
been conducted using the Stillinger-Weber 3-body interaction potential. The cluster binding
energy has been fit to an expression that separates the surface and bulk contribution to the energy
over a wide temperature and size range. Cluster growth simulations show that large heat release
results from new bond formation at gas kinetic rates (i.e. sticking coefficient = unity).
Temperature was found to be the primary controlling process parameter in the evolution of cluster
morphology from an aggregate to a coalesced cluster below 1000 K, with the impact parameter
playing a secondary role.

Introduction

Nanometer processing is receiving considerable interest from a variety of communities,
including those from microelectronics and advanced materials. One of the challenges in this area
is the processing of very fine particles. This would include their controlled growth, chemical
reactivity and transport properties. Considerable attention has been paid to the growth of particles
in the range of 100nm and up, however process modelers have implicitly assumed that small
particle growth is unimportant. These issues however have reemerged due to the interest in
nanometer particle processing[1]. Several outstanding issues are of primary concern in
phenomenological models and pedagogical approaches to controlling particle formation[2]. This
is true from both the perspective of much of the microelectronics community which hopes to
minimize particle growth in the vapor during chemical vapor deposition and the ceramics
community which hopes to develop the ability to grow from the vapor, spherical,
unagglomerated nanometer scale particles{3,4]. This implies that attention should be addressed
toward understanding the nature of the cluster growth kinetics and their morphology.

In this paper we address the dynamics in the formation of silicon particles up to 3 nm from
an atomistic view.

Computation Method ) .

The approach used in this work is to apply an atomistic simulation using classical molecular
dynamics (MD) methods [5,6]. Computations were conducted using the three body formulation
of the silicon potential proposed by Stillinger and Weber (SW) [7]. The three body formulation
provides the mechanism by which the directional nature of the bonding can be realistically
simulated. While many potentials are available to simulate silicon, the SW potential was chosen
because it accurately predicts bulk melting characteristics. Because most cluster formation
processes occur at high temperatures, liquid like characteristics should play an important role in
any description of cluster growth. Classical MD was conducted by solving the Newtonian
equations of motion with a time step of 5.7 x 104 ps. All simulations were started by first
equilibrating the appropriate size cluster to a specified temperature prior to cluster collision. Each
cluster was then given a bulk cluster velocity so that the collision kinetic energy along the 'lme of
centers of the clusters corresponds to twice the thermal energy. Both head-on and large impact
parameter collisions were included.

Equilibrium Cluster Energetics

Because of the large surface to volume ratio, cluster properties vary with size. The approach
to bulk properties as cluster size is increased is in general specific to the property of interest. Fig.
1 shows the effect of cluster size on binding energy per atom at various temperatures. As the
cluster size increases the cluster binding energy increases as one would expect for the case where
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Fig. 2 Phonon density of states for 480 atom cluster as a function of temperature; comparison
with spectra for bulk Si calculated with the Bond Charge Model [9].

Cluster Kinetics

Cluster-cluster collision simulations have been conducted on clusters varying in size from 15
atoms up 480 atoms, as a function of temperature and impact parameter. Fig. 3 shows the result
of the collision of two 60 atom clusters.
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Fig. 3 Dynamics of cluster growth from the collision of two 60 atom clusters at 1200 K
The formation of new chemical bonds during the collision results ina decrease in the internal
°nergy of the resulting cluster with increasing time, as the newly formed cluster finds an

anreasm_g stable configuration, by decreasing its surface arca and thus the number of danfgé;r;%
onds. Since this is an adiabatic problem the energy release goes into the thermal motion O
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rapid but no evidence for coalescence. Coalescence times at the lower temperatures are very size
sensitive, with the larger clusters showing the slowest coalescence rates. At higher temperatures
(above 1200 K) cluster coalescence times are independent of size. In general, melted or near
melted clusters coalesce spontaneously. Data of this nature could eventually be used to develop
scaling relationships for the calculation of sintering rates. An example of the kind of morphology
observed, is shown in Fig. 5 for the collision of two 120 atom clusters at temperatures of 600
and 2000 K at 45 ps after the collision.

600 K Cluster

2000 K Cluster

Fig. 5 Cluster morphology during growth at 600 and 2000 K at 45 ps.

Cluster morphology changes require the movement of atoms via internal cluster diffusion.
Shown below in Fig. 6 is a measure of the extent of atomic mixing defined as the ratio of the
number of nearest neighbors an atom has originating from the other cluster to that of its own
cluster. It is clear that the extent of mixing is very temperature sensitive with the coldest clusters
showing no evidence for atomic mixing. Even at the highest temperatures studied clusters are still
not statistically mixed ( a value of 1 would be perfectly mixed). It is clear that particle coalescence
is a much faster process than atomic mixing.
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