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Abstracts 

The Green functions and Kubo linear-response theory are used to calculate the absorp- 
tion coefficient of a collection of diatomic molecules embedded in a one-dimensional 
lattice. The effect of the environment is restricted to the coupling between the molecular 
internal vibration and lattice vibrations. For the molecular oscillators, both harmonic 
and anharmonic models are considered. The absorption line shape is expressed in closed 
form whether the molecular frequency falls outside or within the allowed phonon frequency 
range. In both cases a frequency shift is found. In theanharmonic case thereis a broadening 
of the absorption lines. Expressions for the shift and line width are given. 

Les fonctions de Green et la thtorie de rtponse lintaire de Kubo ont ttC employtes 
pour calculer le coefficient d’absorption d’un ensemble de moltcules diatomiques 
piegees dans un rtseau unidimensionnel. L’effet du milieu est restreint au couplage entre 
la vibration moltculaire interne et les vibrations du rtseau. Des modcles harmoniques et 
anharmoniques ont t t t  considtrts pour les oscillateurs moltculaires. La forme de la raie 
d’absorption est reprtsentte par une expression analytique finie dans les deux cas 051 la 
frtquence moltculaire se trouve B l’inttrieur ou B l’exttrieur de la bande de frtquences 
permises des phonons. Dans le cas anharmonique il y a un tlargissement des raies d’ab- 
sorption. On  donne des expressions pour le dCplacement et la largeur de la raie. 

Die Green’schen Funktionen und die Kubo’sche “linear response”-Theorie werden 
angewandt um den Absorptionskoeffizient einer Sammlung von zweiatomigen Molekulen 
zu berechnen, die in einem eindimensionalen Gitter eingebettet sind. Die Einwirkung 
der Umgebung wird zur Kopplung zwischen der internen Molekulschwingung und den 
Gitterschwingungen begrenzt. Fur die Molekuloszillatoren werden sowohl harmonische 
als auch anharmonische Modelle betrachtet. Die Form der Absorptionslinie wird in 
geschlossener Form ausgedruckt, in den zwei Fallen wenn die Molekulfrequenz ausserhalb 
oder innerhalb des erlaubten Phononenfrequenzintervalls liegt. In beiden Fallen wird 
eine Frequenzverschiebung gefunden. Im anharmonischen Fall ergibt sich eine Erweiter- 
ung der Absorptionslinie. Ausdrucke fur die Verschiebung und die Linienbreite werden 
gegeben. 

* This work was supported in part by Instituto Mexican0 del Petr6leo Mkxico. 
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1. Introduction 

The Kubo linear-response theory [l] and Green functions method [2, 31 
have been widely used in solid state physics to study impurity or defect-induced 
effects on dynamical properties of crystals [4, 51. However, these methods have 
not yet been applied to problems related to molecules isolated in a matrix where 
the effects of crystal environment on the molecular spectrum may be important 
[S]. The main goal of this paper is to apply the Green functions method to a 
one-dimensional model in order to derive an analytical expression for the molecular 
absorption coefficient. The model considers only a simple interaction between 
the molecules and their environment, i.e., a coupling between the internal 
vibration of each diatomic impurity and its quantized translation. Such a 
coupling is certainly not dominant in most of the cases found in matrix spectros- 
copy, but it can be a good starting point to further studies concerning matrix 
interaction with molecular motion. To  carry out a comparison with experimental 
data, a more realistic situation should be studied, such as rotation-vibration- 
translation coupling in a three-dimensional lattice. 

The simplest one-dimensional system is that of a collection of diatomic 
molecular defects embedded in a linear chain of atoms in which each particle 
interacts with its two nearest neighbors. We will discuss this model in Section 2 
and write down the Hamiltonian of the system. In Section 3 we will calculate 
G(o), the Fourier transform of the Green function for the dipole moment, by 
decoupling the infinite set of coupled equations of motion via a procedure already 
known [2, 3, 71. Next G ( w )  is approximated as a form exact up to the second 
order in the coupling parameter. In  Section 4 we will give expressions for the 
absorption coefficient, frequency shift and width of the molecular spectral lines. 
As it is expected, we find that the interaction between the molecular vibration 
and the phonon band leads to a broadening of the absorption lines only if the 
molecular frequency is within the phonon band or if the molecules are considered 
as anharmonic oscillators. 

2. Model 

The model consists of a linear chain containing n atoms of mass m and N 
diatomic impurities of mass m + mB. Every impurity AB is an heteronuclear 
diatomic molecule with internuclear axes parallel to the chain. Thus, the total 
number of particles in the system is n + 2N. The lattice is divided into N + n unit 
cells of length a, each containing one site. The center of mass, X,", of the ath 
molecule is at the site X, . Each atom can bespecified by its motion in one cell, while 
every molecule introduces an additional degree of freedom within a given cell. 
Consequently, molecules AB have two motions: in one, the atoms A and B move 
in phase with one another, in the other they move out of phase. The molecular force 
constants are K and any two neighboring atoms m, m and mA or m and mB are 

A 
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Figure 1. A schematic representation of the system. The various X ,  are the 
equilibrium atomic positions, G is the molecular center of mass and Ra the inter- 
nuclear distance of the a-th molecule. a is the lattice spacing, K is the molecular 

force constant. Nearest neighbors interactions are pictured by g. 

linked by force constants g. For simplicity, it is assumed that m = mA + mB 
and that all molecules are equally oriented and periodically distributed along the 
chain, as seen in Figure 1. The concentration of molecules, N/n, is low enough 
to neglect any direct interaction between them. We assume that the N molecules 
can be represented both by harmonic and anharmonic oscillators; the two cases 
will be considered. 

We are interested in studying the infrared absorption spectrum of this system 
when it is placed in an external electromagnetic field. Hence, two operators will 
be necessary: the Hamiltonian and the dipole moment of the system. We suppose 
that only the molecules are active systems, so that the external field E( t )  couples 
to the molecular dipole moment M and the whole system is perturbed by the 
coupling term -M * E( t ) .  

In  the first case (the molecules are harmonic oscillators) the Hamiltonian of 
the system before external perturbation, in the harmonic approximation and 
taking into account only nearest neighbors interactions, can be written as 

n+2N 
H = $ 2 (” + gi(xi+l - xi)’] 

i=i mi 

where mi,  x i  and pi are the masses, displacements and moments of every individual 
particle, either atoms m,  mA or mB. The gi are the force constants g or K according 
to the pair of particles involved. 

I t  is readily verified that the introduction, in place of every pair of coordinates 
x p ,  x f  of the s-th molecule, of two new coordinates x? and R, 

m A x t  + mBx,B - 
x p  = = xs 

m a +  mB 

R, = x,B - 

will split the Hamiltonian (1) into three parts HL, H M  and V. Here the s is 
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associated with the s-th site in the lattice. The corresponding momenta are 

(3) 
PP = P% + P: = P s  

's = PMRs 

B .B where pa = mAiA, p B  = m x 
Hamiltonian can be written 

and p M  = mAmB/(mA + mB).* The resulting 

H = HL + HM + V 
where 

N 

a = l  
= -g/(mA + m B ) c  R a { ( x a  - xa--l) mB + ('a+l - .a) md> 

with 
d2+ mB2 

( m A  + mB)' 
R = K + g  

The term HL represents the Hamiltonian of a linear chain of N' = n + N 
particles of mass m, because of the restriction m = mA + mB. HIM stands for 
the molecular Hamiltonian and represents an assembly of N independent and 
localized harmonic oscillators with force constants x. As HL depends only on 
lattice coordinates x and p and HM depends only on molecular coordinates R 
and P, we associate their sum H, = HL + HM with a Hamiltonian of non- 
interacting particles. In  that case the term V represents the interaction between 
these two systems showing that the molecules interact with each other only 
indirectly through their coupling to the lattice. 

The assumptions m = mA + mB and that atoms mA and mB are linked to their 
nearest neighbors m by the same force constant g that links also two neighboring 
atoms m, are very restrictive. But it is of interest to simplify H, as much as possible 
for two reasons. This simplification avoids the existence of localized or resonant 
modes. This fact reduces H, to two independent systems instead of three or four 
as would appear according to the different situations m 2 mA + mB and/or 
g $ g' (with g' the force constant linking atoms m to mA or mB) [8]. Second, we 

* The canonical variables x A  and xB and their conjugated momenta P A  and jB satisfy a set 
of commutations rules: [xA, j A ]  = [ x B ,  j B ]  = ih and [ x A ,  x B ]  = [xA,  jB] = [ x B ,  PA] = 
[ p A , p B ]  = 0. The transformation (2) preserves these rules, thus [x*, R] = [xG,  PI = [R,pG] = 
[fit, PI = 0 and [xn, pa]  = [R, PI = ih. 
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are primarily interested in studying the qualitative features of the pure phonon 
field on the internal vibration spectrum of the molecules. 

I t  is convenient to write the terms HL and V in Equation (4) using the trans- 
formation of the lattice coordinates x, and &$ to normal coordinates expressed 
in terms of phonon creation and annihilation operators bfz and 6, [9] 

(5) 

We take ii = 1 throughout. The Xs  are the equilibrium positions of lattice 
atoms, wk = wL lsin ika11/2 are the normal mode frequencies, wL = (4g/m)1/2 
is the cutoff frequency, a is the lattice spacing and the allowed values of k are 
2 m / N '  ( v  = 0, f l ,  f 2 ,  - * - , + N'/2) .  The commutation rules for the new 
operators are 

[ b , ,  b z ]  = dkk,;  [ b , ,  bkt] = [ b l ,  b;] = 0 

Next we write the molecular Hamiltonian HM as well as V in terms of dimen- 
sionless raising and lowering operators a: and a, defined as [ 101 

a: = ( / ~ M U M / ~ ) ' / ~ R ,  + i ( 2 p M w M ) - ' / 2 P a  

a, = ( ~ M O M M / ~ ) ' / ~ R ,  - i ( 2 p M w & f ) - ' / 2 P ,  
(6) 

where coM = (K/pAf)1'2 is the molecular frequency. The operators a: and a, 
satisfy the commutation relations [a,, a:] = d,,,, [a:, a:] = [a,, a,,] = 0. In  
terms of these operators the Hamiltonian given in (4) may be written as 

(7) 

where 

and 

f,(k) = ( ~ ' w , )  -112 e i k X a  [ d ( 1  - eiku) - mB(l - e-ikQ)] 
(8) 

The X, are the equilibrium center of mass coordinates of the N molecules. 
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It is convenient to work with the related operators pk = (l/&)(b, + b?,), 
T, = (1 /&) (b: - bPk), pa  = (I/&) (u: + a,) and T, = (I/&’) (u: - a,) whose 
commutations rules are [pk, rkt] = B,,,, [p,, pk.] = [T,, T,.] = 0 and [p,, T,,] = 
B,,,, [pa, purl = [T~, T,,] = 0. In terms of them the total Hamiltonian is given by 

In the anharmonic case (the molecules are anharmonic oscillators) we only 
consider a cubic correction to the molecular Hamiltonian H,, thus 

where 1; is the anharmonic constant. By using the operators y ,  and T, already 
defined, the anharmonic Hamiltonian may be written as 

(11) 
where 

q = - 5 (pMwM)-3’2 

6 
and H is given in (9). 

The dipole moment operator of the system is obtained by following the same 
steps as for the Hamiltonian. Since the system is composed of n inert atoms and 
N molecules having a permanent dipole moment M, the total dipole moment is 

where we assume that the dipole moment varies linearly with R. Here, Ma is the 
dipole moment in the equilibrium position and Ml = (aMa/aR),. Let M = 
M ,  - 11.1, be the dipole moment referred to the equilibrium configuration, then 

(13) 
where 

3. Green’s Functions and Absorption Coefficient 
According to the Kubo linear-response theory [l], the rate at which a pertur- 

bation does work on the perturbed system is 

(14) W = h ~ ( m )  
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where .(w) is the absorption line-shape function which we call absorption 
coefficient and A is a constant. When the perturbation is -M * E( t ) ,  where 
E( t )  = Eo(eiwt + ePio t )  is the applied electromagnetic field oscillating at a fre- 
quency satisfying the resonant condition o m uLIf, the absorption coefficient is 
given by 

(15) 
t 

.(m) = 0 dt’([M(t),M(t’)]) ID 
The operators in this relation are evaluated in the interaction picture: M(t)  = 

with M as given in (13). Here, the Hamiltonian H is given in (9) 
for the harmonic case and includes the correction (1 1) in the anharmonic case. 
The brackets ( ) represent the time-independent average value of an operator 

e iH t ~ ~ - i H  t 

(16) (Op)  = 2-l Tr e-BHOp 

where Z is the partition function, /? = l/kBT, kB is the Boltzmann’s constant and 
T is the temperature of the system. 

The absorption coefficient as defined in (15) is the imaginary part of the 
Fourier transform of the dipole moment Green function [Z] 

(17) ( (M,  M))  = -w - t‘)([M(t), M0’)l) 

where the step function O ( t  - t ’ )  = 1 if t > t’ and O ( t  - t ’ )  = 0 if t < t’. Thus, 
in order to determine the absorption coefficient ~ ( w )  one must calculate the 
frequency-dependent Green function 

For any two operators A and B, the Green function satisfies the equation [2] 

By Fourier transforming this equation one obtains 

(20) u((4  B)) ,  = ( [ A ,  BI) + ( ( [ A ,  HI, B)) ,  

The last term is a new Green’s function of higher order for which one can write a 
similar equation and generate a third function of still higher order. This process 
may be continued to give rise to an infinite hierarchy of equations. In  order to 
solve this hierarchy of equations approximately, one breaks off the set some place 
to obtain a self-contained system of equations involving only lower-order Greens’ 
functions. This is done by means of a decoupling procedure [7, 111. 
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In  our case, by virtue of Equation (13) the Green function to be studied is 

( (M,  M ) > m  = Y' Z: ( ( ~ u ?  Pa,>>m 
ua' 

(21) 

Therefore we are interested in knowing the Green function of the molecular 
internuclear displacements. 

A. Harmonic oscillator 
Consider a system with Hamiltonian given as in Equation (9). Then, ac- 

cording to (20), the Green function of the molecular internuclear displacement is 

(22) W ( ( v a  2 ?a'>>" = - W M ( ( T a  > v a ' ) ) w  

The new function ((T@, v,.)), gives rise to the following equations: 

After some elementary algebra we obtain 

and 

Equation (24) can be condensed into matrix form 

(26) qJ = R(1 + FqJ) 

and 

(27) = Q(l - QF)-* 

Here 1 is the unitary matrix and the elements of F are given in (25). q~ is an 
N x N symetric matrix characteristic of the inhomogeneous set of equations 
obtained when Equation (23) is written for all pairs of molecules. This system 
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may be solved when the number of impurities is small. The N solutions yield a 
tight packet of frequencies near the initially degenerate molecular frequency o j M .  
This phonon induced process is a source of inhomogeneous broadening. However, 
for low concentration, Nln < Q, the width of this band is very small because 
the Fas in Equation (25) is negligible except for the diagonal term Fa,.  If we 
neglect the inhomogeneous broadening, the problem of N molecules reduces to 
that of one molecule. Thus, 

W M  

w2 - OJ& - wMFUa ((9, , ya>?co = (28) 

To evaluate Faa we integrate over the linear chain density of states 

2 ” 
9 ( ( O k )  = - (w; - w y ’ 2  

T 

if wk < wL and 9 ( w k )  = 0 otherwise. Then 

(29) 

where 

F(w)  = P r d C @ ( W k )  Fa, 

P indicates the principal part of the integral and 

The integral F(w)  has been evaluated numerically and several significant figures 
are given in Section 4. From Equation (27), the imaginary part of ((rpa, y,,)), is 

Near the resonant frequency w w w M  two situations may be distinguished: 
w M  > wL and wM < wL. In the first case M ( w )  = 0 and F ( w )  w F ( w M ) ,  thus 

(32) I m  ((9, , Fa>>, = T ~ M  d(w2 - GL) 

where 6% = 0% + wMF(wM). Since F(w)  is a positive quantity, the absorption 
frequency is shifted towards the high-frequency region. The absorption peak 
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has no broadening in this case. The second situation mM < coL is less frequent, 
but can be illustrated by several heavy diatomic molecules for which, however, 
no matrix experimental data are available. Other examples can be found in the 
infrared spectra of solid Ar doped with Kr  or Xe [12] which exhibit an absorption 
band indicating the presence of an induced dipole moment presumably associated 
with the pair Ar-Kr or Ar-Xe. Such a pseudomolecule would oscillate at  very 
low frequency and may constitute a physical example of this case. Let us call 
6 the frequency at  which Equation (31) has a maximum value. Near this point 
the functions F(o) and M ( o )  vary slowly with co. Therefore, if we replace them 
by F z  F ( 6 )  and i@g A4(6), Equation (31) has a Lorentzian shape: 

(33) 

The departure from a Lorentzian due to the fact that F ( w )  and M(co) are not 
strictly constants is very small and amounts to a 2 to 4 % discrepancy in the tails. 
Then, for all practical purposes the absorption coefficient is 

where Im ( (qu,  put)), is given in (32) or (33) according to the case. In  the case 
coM < coL the Lorentzian-type function is modulated by co presenting, thus, an  
asymmetry which is more evident in the tails. 

B. Anharmonic oscillator 
When the Hamiltonian (9) of the system includes the cubic correction given 

in (1 l ) ,  the starting Green's function for the displacements satisfies the same 
equation as in the harmonic case, i.e., Equation (22). But the function ((ru, q,,,)), 
gives rise to a different set of equations which is given in Appendix A. We obtain 

After substitution into Equation (22), we have 

(36) (w2 - w h ) ( ( q u  9 qu,>> = w,(aua, + 2 I f a ( k ) ( ( q k  , pa,)), + 317((q: p u * ) ) m )  

In  order to find ((qz, p,~)), up to terms in A2, the systems of equations (A.1)-(A.3) 
must be solved in terms of several higher-order functions. These functions are 
afterwards written in terms of lower-order functions. This approximation which 
consists of pairing off all operators at  one time [7] is equivalent to the Hartree- 
Fock self-consistent field approximation. In  doing so, all third-order Green's 
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functions can be expressed in terms of first-order functions: 

where 

After substitution of the approximated functions into the sets (A. l)-(A.3) and 
by keeping only terms up to 3L2 we obtain 

and 

. ,  

1 7 d  - w& - 3 4  1 lo4 + I I&& - 7 d 4  + 4c0&0; - 40% 
0 2 ( c u 2  - 40L) + 

Just as in the harmonic case, Equation (38)  can be condensed into matrix form 
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where 9,$ = wMFta./Da, . For one molecule the preceding equation reduces to 

(42) 
where 

K, = (a2 - 4 0 & ) [ ( ~ ~  - 5 ~ ~ ~ 0 %  + 4w;f - 45q2~&(2aa + 1) 

- w M ( w 2  - 4w&)Fa,] - 9A2$~&(2na + 1) 

f , ( k ) f , ( - k )wk(37w4  - 530~ '~ :  + 31~0'w& - 48~:0& + 20w;Z. + 4wk) 

(w2 - o ~ ) [ ( w ~  - C I J ~  - C O ~ ) ~  - 40&w:] 

(43) 

x c  

Once integrated over a continuous density of states K, can be separated into a 
real and an imaginary parts: 

(44) 

where 

Ka = K ( w )  + i M a ( ~ )  

(45) K ( w )  = P r d w k @ ( w k ) K ,  

In  the case wM > wL , the imaginary part of K, is 

(mA - mB)2(1 - cos k-a) + m~mB(1 - cos 2k-a) 
(47) L(w - w M )  = 

Lc) - W M  

with 
2 . -1 w - k- = -sin ( wL ) 
U 

When w M  < wL , the function MA(w)  is given by 

(48) M A ( w )  = -A2( - 2w,+Jw2 - 4 0 ~ 1 f ) L ( c o ) 9 ( w ) [ 0 2  - 4wL + 18q2(2na + I)] 
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where 

Then, in both limits w M  2 wL the absorption coefficient is 

with MA(w)  given by (46) or (48) according to the case. 

4. Results and Discussion 

In  the previous section expressions for the absorption coefficient have been 
given for both the harmonic case, Equation (34), and the anharmonic case, 
Equation (50). Expressions for the frequency shift between gas and matrix 
absorption lines and for the width of those lines can be also obtained. In  the 
harmonic case the shift is 

and the half-width is 

r=o  if w,> wL 

2 

In  the anharmonic case the shift is AwA = a4 - w,, , Here 6' indicates the 
value in w where K ( o )  = 0, while coo stands for the gas phase anharmonic 
frequency. The half-width is given by F A  = MA(w)/2.  

The shift and width for the harmonic and anharmonic cases have been 
computed numerically for several molecules. In  Table I1 we give the anharmonic 
shift and width for HF, HCI, HBr, GO, and NO for which the harmonic shifts 
for these five molecules are not significant. Table I gives the noble-gas masses 
and the parameters g used to calculate the coupling constant 1. Also given are the 
cutoff frequencies vL = w,/2rr. In  order to fix the parameter 7, the calculation 
for the anharmonic case has been carried out by putting 1 = 0. Then ((y,, , y,,)), 
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TABLE I. Masses, force constants and cutoff wave numbers of 
noble-gases used in this work[9]. 

m(a.u.) gx105 dyn/cm2 oL(cm-l) 

Ne 20.2 0.27 290 
Ar 39.9 0.61 320 
Kr 83.8 0.70 240 
Xe 131.3 0.87 210 

a Parameters g are chosen large enough to obtain wide phonon bands 
so that the oscillation frequency of several heavy molecules fall 
inside. 

TABLE 11. Half-width and wave numbers of the 0 -+ 1 vibrational transition of HF, HCl, 
HBr, CO and NO. Also given are the shifts AmA = ogatrix - o,",, . All values are given 

in wave numbers v(cm-l) = w/27rc. 
~~~~~~ ~ 

YO AvA r A  

gads) 3958.38 
Ne 3954.4 -4.0 16.5 

HF Ar 3948.7 -9.7 35.0 
Kr 3957.6 -0.8 50.0 
Xe 3962.4 4.0 56.0 

HC1 

HBr 

co 

gas@) 2885.64 
Ne 2880.1 -5.5 10.0 
Ar 2873.8 -11.8 21.5 
Kr 2875.2 - 10.4 32.0 
Xe 2871.4 - 14.2 48.5 

gas(a) 2556.25 
Ne 2550.5 -6.8 9.0 
Ar 2543.4 - 12.9 21.5 
Kr 2544.5 -11.8 30.0 
Xe 2540.1 - 16.2 42 .O 

gas 2143.29 
Ne 2143.2 -0.1 0.1 
Ar 2143.0 -0.3 0.1 
Kr 2142.8 -0.5 0.2 
Xe 2142.8 -0.5 0.2 

gas 1876.09 
Ne 1876.0 -0.1 0.1 

NO Ar 1875.7 -0.4 0.2 
Kr 1875.7 -0.4 0.2 
Xe 1875.4 -0.7 0.2 

(a) Reference [ 131. 
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TABLE 111. Half-width and wave numbers of the 0 -+ 1 vibrational translation of CsBr, 
HgBr and CsI for the pure and mass defect corrected harmonic case with WM < w~ . 
Also given are the corresponding shifts Aw = wmatrix - wgas . All values are given in wave 
numbers v(cm-l) = w/27rc 

VM Av r VL Avd r d  

gasa 
Ne 

CsBr Ar 
Kr 
Xe 

gasa 
Ne 

HgBr Ar 
Kr 
Xe 

gasa 
Ne 

CSI Ar 
Kr 
Xe 

194.0 
192.7 
192.2 
195.7 
198.0 

186.2 
184.7 
183.9 
186.9 
187.8 

126.9 
140.0 
138.2 
142.1 
141.2 

-1.3 
-1.8 

1.7 
4.0 

-1.5 
-2.3 

0.7 
1.6 

13.1 
11.3 
15.2 
14.3 

9 
18 
17 
25 

8 
16 
20 
32 

7 
17 
18 
28 

191.3 
191.0 
188.1 
190.8 

181.0 
181.8 
172.2 
173.3 

140.0 
138.2 
142.1 
141.2 

-2.7 
-3.0 
-6.9 
-3.2 

-5.2 
-4.4 

-14.0 
-12.9 

13.1 
11.3 
15.2 
14.3 

12 
22 
18 
20 

23 
28 
22 
32 

7 
17 
18 
28 

a Reference [ 131. 

given in Equation (38) reduces to 

(53) 

The value of q2 has been fitted to agree with the experimentally observed gas 
phase frequencies wo [ 131, thus 

(54) 

In  Table I11 we give the harmonic frequency shifts and width of CsBr, CsI 
and HgBr. These molecules corresponding to the case w M  < wL give broaden 
absorptions in contrast with the harmonic case where w M  > wL. But these 
molecules are much heavier than the matrix host atoms; hence, there is an 
important correction caused by the mass defect that must to be included. I n  
Appendix B the harmonic case with mass defect has been developed and the 
results are given in Table 111. The absorptions are broaden by this correction 
and the widths rd are also included in this table. 
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The Green function technique applied to the simple case of diatomic molecules 
coupled to the lattice modes of a linear chain shows that molecular anharmonicity 
and mass defect may give an important contribution to the broadening of absorption 
lines. Broadenirlg always appears in the case cuM < c u L ,  even for the harmonic 
oscillator model. To give a more realistic model this treatment should be extended 
to three dimensions. In doing so, the effect, of vibration-translation coupling 
treated in this work could be included as a refinement of the rotation-translation 
model [6]. Work is in progress in this direction. 

Appendix A 

In the anharmonic oscillator case the starting functions ( ( m a ,  vat)>, and 
((nu, p,.)), given in (22) and (35) respectively, give rise to the second-order 
function ( ( p ? $ ,  pa , ) ) ,  . T o  find this function a set of three equations must be 
solved in terms of third-order functions: 

As new second-order functions are still generated, two more sets of equations 
must be solved 

r 1 
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Appendix B 
The Hamiltonian for the harmonic oscillator case given in Equation (4) 

needs to be corrected if the impurity mass is much higher than the host masses: 

N ( m A +  m B -  m) 
u=l 2 m2 H ~ =  H + Z  Pa 

The second term characterizes the correction due to the mass defect. After 
transformation to operators v k ,  rk ,  ya and ra the Hamiltonian (A.4) can be 
written as 

(A-5) 

where 

N 
H d  = H + X I  2 Ua(k, k ’ ) r k r k ,  

a=l  k.k’ 

U(k,  k’) = U ( - k ,  -k’) = (@kmk’)1’2 e -(k+k’ )Xpy 

2N‘  

Here the X ,  are the equilibrium molecular center of mass coordinates and X = 
( m  - ma - mB)/m. 

and ((ra,  qa,>>, are the same 
as in the pure harmonic case, i.e., they are given in (22) and (23). But the function 

The two starting Green’s functions ( ( va ,  
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( ( p k ,  pa,)), originates a different set of equations whose solution leads to 

+ 2 l f f l ( - k ) W k  - 2x 2 2fp(k’) up,(k> “ ) ] ( ( v / J ‘ v a ’ ) ) m  
8’ b‘ k’ 

Next we replace ((vk, , y,.)), by the unperturbed function obtained from (23) 

When condensed into matrix form, Equation (22) can be written as 

(A.9) ‘ p d  = Q(1 - Q%)-’ 

where the matrix elements of 9’ are 

For one molecule, the previous result reduces to 

(A. 1 1) 

where 

(A.12) 

Thus, the corrected absorption coefficient is 

where F d ( w )  and M d ( w )  are the real and imaginary parts ofF,d, , once the inte- 
gration over the continuous density of states has been carried out. A numerical 
application of the mass defect corrected shift and widths has been done for a 
group of three heavy molecules. The results for the shift 

(A.14) A d  = (US + w ~ F ( w )  - Fd(w))l” - wM 

and width = $[wMM(w)  - Md(w) ]  are given in Table 111. 
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