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Correlated Walk Model of the Melting Transition in Small Clusters
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A novel criterion to locate the melting temperature, T,,,, in clusters is proposed. Based on the characteristics of
the configuration space of the clusters we identify a class of clusters that: (1) have the global minimum of the
potential-energy surface well detached by an energy gap from all other local minima; (2) present a large
number of local minima above the gap that can be accessed by the system before evaporation takes place and
(3) have a mean energy spacing between the local minima that is very small compared to the gap. For this class
of clusters, one trajectory in phase space split into short time intervals can be mapped onto one state of a
one-dimensional walker that steps on the various minima in configuration space. The average number of acces-
sed minima above the gap, f, is obtained in a closed form. This quantity has a sigmoid shape as a function of
temperature, i.e. it changes fairly rapid from zero at low temperatures to one at high temperatures. Thus f(T) is
identified as the signature of the melting transition, and we define T, as the temperature at which f(T) reaches
the value of 1. This phenomenological model is supported by a comparison with a molecular-dynamics simula-
tion of 12-, 13- and 14-atom Lennard-Jones clusters. Values of the parameters pertaining to the theory are

extracted from the simulation and a comparison to Lindemann’s criterion for melting is provided.

A variety of approaches have been proposed in the past few
years to describe the process of melting in small clusters con-
taining one or two atomic layers.!~> The main concern has
been to give a reasonable interpretation to the total energy
vs. temperature curve as obtained from molecular-dynamics
simulations in this range of cluster sizes. On the other hand,
melting in other finite-size systems, such as polymers or bio-
logical molecules, is commonly described in terms of a pro-
perty that changes abruptly with temperature between two
extreme values.® The Ising model and related models have
been applied with success to describe the helix—coil transition
observed in polymers with helical structure,”® the melting of
biological molecules® and the denaturation process in DNA.
We present here a different approach to the study of
melting in small clusters. In the next section we assume that
it is possible to inspect the potential-energy hypersurface of a
cluster in order to obtain information about its inherent
structure.'® This conformational inspection allows a partition
of configuration space into two regions, one associated with
the global minimum and its catchment area and another
outside, the former including many possible local minima.
The cluster will access these two regions differently along a
trajectory in phase space depending upon its energy. We
propose to map the short-time excursions of the cluster
among the global and local minima along a path in configu-
ration space with the state of a random copolymer containing
n binding units with nearest-neighbour interactions. Formally
the copolymer of units I and B can be described in terms of a
one-dimensional correlated walk with different probabilities
of stepping forward than backward.” Within this model the
average fraction of times that the cluster accesses minima
other than the global minimum along a path in configuration
space can be calculated exactly. We call this quantity f: it
changes from zero at low temperatures to one at high tem-
peratures, and presents a sigmoid shape between these values.
We propose to associate the melting of clusters with the value
of f as a function of temperature. F urthermore, we identify
the temperature at which f= } as the melting temperature of
the cluster. In the following section we describe the computer
experiment used to obtain the inherent structure of 12-, 13-
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and 14-atom Lennard-Jones clusters.!! The simulation allows
us to obtain the frequency with which each cluster ends a
quench, either in the global minimum or in any other local
minima. We compare the values of this frequency with the
theoretical results of the previous section and make an
empirical choice of the two parameters contained in the
theory. We conclude that the 12- and 13-atom clusters melt,
but that the 14-atom cluster evaporates before melting. In the
penultimate section we show that the melting temperature of
the clusters is higher than that obtained according to Linde-
mann’s criterion. We conclude this paper with several
remarks.

The Correlated Walk Model

The basic idea is to map the inherent structure of a cluster
inspected in a discrete manner during one molecular-
dynamics trajectory with one state of a correlated walker. An
ensemble of these trajectories can easily be treated using the
language of correlated walks. The partition function can be
cast in a closed analytical form, as well as certain ensemble
averages of properties relevant to the cluster.

We consider clusters with few atoms, typically of the order
of ten. We assume that the cluster remains in its ground state
during a thermal process of heating. We assume also that the
potential-energy surface of the cluster exists, and focus our
attention on the classical motion of the nuclei. One long clas-
sical trajectory of the cluster in phase space can be segmented
into n equal short-time segments. At the end of each of these
short-time segments the cluster exhibits a certain geometry.
Thus, along the trajectory n instantaneous geometries are col-
lected. Each of these geometries might correspond to a
stretched (or compressed) deformation about one minimum
in configuration space. However, it might also correspond to
a saddle of the potential-energy surface, or to any other more
intricate spot on this surface. Further, we assume that it is
possible to inspect which is the closest minimum on the
potential-energy surface to each of the n instantaneous
geometries. Thus, for any one of the n instantaneous geome-
tries there corresponds a minimum of the potential-energy
surface. We are interested in this string of n minima, ordered
sequentially in time as the original instantaneous configu-
rations were in the classical trajectory. We map this string of
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n minima onto one possible walk, n steps long, of a walker on
a one-dimensional lattice with equally spaced sites. Each site
represents a possible minimum of the potential-energy
surface. The walk of such a walker on this lattice replaces the
original classical trajectory of the cluster. This is the analogy
to be described in the rest of the section.

Let us consider a class of clusters for which the potential-
energy surface has the following characteristics. (i) There is a
well defined global minimum, to be identified by 1. The value
of the potential energy at the minimum is ¢;. (ii) There are
many local minima with potential-energy values eg well
detached from the global minimum by an energy gap AV.
These minima will be identified by B; (iii) the mean nearest-
neighbour energy spacing § between the potential-energy
values at the local minima is considerably smaller than AV.
Thus the potential-energy surface of the cluster is partitioned
into two relevant regions, I associated to the global minimum
and its catchment area, and B corresponding to all the rest,
where many local minima might exist.

Consider a one-dimensional walker that hops n times on
those minima, I or B, with two hopping probabilities p; and
pe of ending a jump in minimum I or B. These jumps will be
called ‘visits’. These two probabilities depend on the tem-
perature of the system. One state of this walker is pictured by
a string of symbols ... IBBIIIIIBBBBIIBBB ... n. Further-
more, two contiguous visits are correlated, but correlations
between non-consecutive visits will be neglected. In one state
the walker visits ng times the minima above the gap AV
(labelled B), and n — ny times the global minimum I. Let ny
be the number of times that two consecutive visits end,
respectively, in minima I and B (or B and I). At low tem-
peratures the walker visits I more times than B. At high tem-
peratures the walker visits many minima in region B with few
visits to I. The ensemble average of ny is a function of tem-
perature, and we propose to describe melting in terms of it.

The probability of one state of this walker is built up by
using the following recipe for the one-jump probabilities: (i) B
after B weights pg/p; = ¢, (ii) I after I weights 1, (iii) B after I
weights Y and (iv) I after B weights y. Therefore, the weight
of any state to the canonical partition function is

¢,nn~nm/2(|/,2¢)nm/2_ (1)

There are many ways of rearranging the sequence of Bs and
Is. Thus, the weights in eqn (1) carry a combinatorial factor
g(n, ng, ng;) when added into the partition function Z,

Z= Z Zg(", g, Ne)@ ™=, (2)

nB npI

In terms of the two eigenvalues 4, and A, of the transfer

matrix”—®
1 yé
T=
(w ¢> ©

the partition function is simply Z = C, A5 + CyA}. Here C,
and C, are constants. In the limit of large n only the largest
eigenvalue A, contributes to Z. On the average, the fraction
of visits to minima B out of n visits is given by

fw 1) ¢

(6= 1+ 292
(s ) ©

where 4o = {¢+ 1 + [(¢ — 1) + 4¢y*1'?1/2 and the contri-
bution by 4, is neglected.

J. CHEM. SOC. FARADAY TRANS, 990, VOL. 86

To determine the temperature dependence of f we must
determine the temperature dependence of ¢ and Y. We
propose that

¢ = ¢ exp(—a AV/kT)
Y = exp(— K/kT) ®)

where k is Boltzmann’s constant. The factor ¢, is entropic,
does not depend on temperature, and depends on Q the
number of B minima. The quantities K and « are two param-
eters subject to the condition that at T, ¢ =1 and ¢ = 4.
The value = 7 corresponds to the maximum possible value
of the joint probability of visiting I immediately after B (or B
immediately after I) if p; + pgy = 1. The walk reduces to a
random walk if the correlation s is set to zero. Since it is
difficult to obtain an accurate estimate of Q, an alternative
strategy is to set In ¢ = «(T) AV/kT, and expand o(T)
near T,,

oAT) = oT,,) + a’(Tl - 1) 4+ (6)

m

Because of the condition ¢ = 1 at T,,, «(T,) = 0. The param-
eter K is uniquely given in terms of T, ie. K = kT, In 4.
The parameters «’ and T, can be determined empirically.

The ‘melting curve’ is given by f = f(T), from eqn (4)6). It
tends to zero for T — 0 and to one for T — oo, it is valued }
at T = T, and the change between the two extreme values
takes place in a fairly narrow range of temperatures. The
S-shape of this curve presumably indicates that the time-
sequential visiting of minima B is ‘cooperative’ rather than
random. Cooperativity is measured by the slope of f(T) at
T,,, i.e. (AV/4kTZ)d'/ip. This quantity depends on the param-
eter « (at T,,, ¥ = 3). The larger the slope, the more coopera-
tive is the process under study. In this case cooperativity
indicates that when the cluster visits one local minimum B
above the gap, it is easier to access another local minimum B
in the next visit. When AV — 0, f(T) increases very smoothly
with temperature. For this reason, if a cluster does not
present a potential-energy gap between the global minimum
and the many other local minima, a melting-like behaviour is
not apparent. In this case the cluster is amorphous at all tem-
peratures. The entropic contribution is embedded in o, a
parameter that should increase when the number of B
minima increases.

The temperature dependence of f(T) is shown in fig. 1fora
special choice of AV, T, and o’ corresponding to a cluster
containing 13 atoms interacting via Lennard-Jones pair
potentials. The next section gives the details concerning the
molecular-dynamics simulation. The potential-energy gap for
this example is AV = 0.22¢, where ¢ is the Lennard-Jones well
depth. The temperature is given in reduced units and denoted
b_y an asterisk (*), i.e. T* = ¢/k. As shown in the figure, the
S}gmoid shape of the melting curve is evident. The continuous
line corresponds to AVa' = 7.62¢, kT,, = 0.3c. The dashed line
corresponds to the same three values but where Y is kept
constant and equal to § at all temperatures. The dotted line
corresponds to the limit of no cooperativity, which is attained
when only one local minimum B exists, ie. In ¢, =1 or
equivalently AVA kT, = 1.

In general, mappings of the correlated one-dimensional
walk, such as are used in biopolymers, lead to an expression
tfor Sf(T) that depends on ¢ and y. T, is not considered as an
independent parameter, but rather it is the temperature (or
PH or solvent effect) that constrains ¢ to be 1. Also, in bio-
polymers  does not usually depend on temperature. It
ra}ther reflects the fact that the system goes from a state of
high local entropy to a state of low local entropy with a very
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Fig. 1. Average fraction of visited minima f plotted as a function of
temperature for the 13-atom cluster. Full line corresponds to eqn
(4)(6); dashed lines corresponds to i = 4 (temperature-independent);
dotted lines show the limit to the random model; dots are the com-
puter simulation values given in table 1. The temperature is in
reduced units.

small probability. Usually, for heterogeneous spin systems in
a magnetic field that use the Ising model, y is set equal to the
Boltzmann factor exp(—K/kT), and K is a paramagnetic
energy. Transfer matrices are in general symmetric.” Our
approach has characteristics of both, since ¥ is set as a Bolt-
zmann factor, but ¢ has the entropic prefactor. As stated in
our model, K > 0. The reason for introducing K is that we
believe it gives some information about the eventual barrier
heights surrounding the ‘catchment’ area of the global
minimum in configuration space. Since the zero of energy was
referred to AV, K + AV might be associated with an average
potential-energy barrier outside the global minimum well.
However, the cluster only ‘sees’ this barrier when there is
enough thermal energy to come across it.

The Molecular-dynamics Simulation

We consider small clusters containing 12, 13, or 14 atoms.
The interaction between the atoms are represented by pair-
wise potentials of the Lennard-Jones (LJ) type with param-
eters ¢, g. The total potential energy is

N
V =4 Z [(‘7/".',')12 - (U/rij)6]~ ™
i<j=1

The configuration space of these clusters has been extensively
studied.!>!5 The global minimum of the 13-atom potential-
energy surface is the icosahedron, and that there exist at least
987 more local minima describing other stable isomeric
forms.!3 The icosahedron binding energy is well detached
from its nearest competitors by a gap AV,; = 0.22¢ per atom.
The mean spacing between minima in the high potential-
energy region is 8,5 ~ 0.012¢ per atom. Similarly, the 12- and
14-atom clusters both have fairly large gaps compared to 9,
namely AV,, =0.14¢, &,, = 0016s, AV;,=0.12¢, ;.=
0.011¢. This example seems ideal for two reasons. First, we
referred in the previous section to a class of clusters for which
there exists a well defined gap AV. Secondly, in these clusters
the ratio AV/d ~ 10 and there are many local minima associ-

ated with mechanically stable packings of the N atoms.
Constant-energy molecular dynamics were used in this
computer experiment. The Newton equations of motion were
solved using Verlet’s algorithm!® with a time step of 0.01z,
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Fig. 2. Total energy plotted as a function of temperature in reduced
units. (A) N = 13. The melting temperature is indicated as T_; (B) (i)
N =12and (i) N = 14.

where © = (mr/e)/?; m and r, = 2'/°¢ were adopted as units
of energy and distance. Temperature and energy will be
reported in reduced units of ¢/k and ¢, respectively. Reduced
units will be quoted with an asterisk (*). Temperature refers
only to vibrational motions and was defined as kT =
2{E,;,>/(3N — 6), where {E,;,> is the time-average kinetic
energy of the cluster.

The first step in this simulation was to generate the curve
of total energy per particle as a function of temperature. The
resulting equilibrium thermodynamic states (points on the
curve) are reported elsewhere,!' but reproduced here for
completeness in fig. 2(A) and (B). The experiment was started
from a cold cluster in the geometry corresponding to the
global minimum. Next, the cluster was subject to a steplike
heating process at the end of which an external thermal
energy of 0.4¢ was given to the system in 2200z. In the tem-
perature region where the transition temperature was
suspected to occur [filled points in fig. 2(A) and (B)] averages
were taken over 330t. At low temperatures the system distrib-
uted the energy equally among the 3N — 6 internal vibrations
of the cluster. This can be assessed by the linear behaviour of
E(T) at low temperatures. In reaching the curved region of
E(T), the system is hot enough to allow the first group of
bonds between one of the surface atoms and the central atom
to break. In so doing, it starts a trajectory that takes it to
“visit’ a set of isomeric structures. Each visit, of course, corre-
sponds to a minimum of the potential-energy surface. At
higher temperatures it is difficult to establish if E(T) is a
linear function of T because the cluster evaporates.

The second stage of the simulation was to measure f(T),
the fraction of times that the cluster visits the local minima of
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Fig. 3. Histogram of the number of visits to the various minima for the six thermodynamic states labelled (@) f) in fig. 2(A). The temperature is

in reduced units.

Table 1. Temperatures in reduced units and fraction of visits to
isomers above the gap for the 13-, 12- and 14-atom clusters and for
runs of various lengths

state run length, t T* f
N=13
(a) 1200 0.2815 0.20
(b) 1200 0.2868 0.45
(©) 1200 0.2995 9,65
@ 600 0.3099 0.72
900 (evaporation)
(e) 600 0.3213 0.79
900 (evaporation)
) 600 0.3524 0.87
900 (evaporation)
N=12
(a) 1200 0.2109 0.14
b) 1200 0.2334 0.25
(© 1200 0.2365 0.40
{d) 1200 0.2405 0.54
(e) 1200 0.2564 0.55
65 600 0.2652 0.62
900 (evaporation)
N=14
) 1200 0.2631 0.05
(© 1200 02717 0.12
@) 1200 0.2779 0.16
(e 900 0.2867 0.28
1200 (evaporation)
) 300 (evaporation)

the potential-energy V above the gap. To achieve this goal,
each of the points labelled (@}(f) in Fig. 2(A) and (B) was
propagated for another 900z. In some states, e.g. state (f) for
N = 12, states (d}{(f) for N = 13, state (f) for N = 14, evapo-
ration took place before 900t had elapsed. In these cases we
considered shorter trajectories. The molecular-dynamics run
was stopped and quenched'® every 5t to a local minimum of
V. Quenches were achieved by minimizing the potential-
energy function with respect to its 3N — 6 internal coordi-
nates. By this means we collect at least 120 minima (240 in
some cases) of the potential-energy surface for each tem-
perature. The number of visits to each minimum in the
potential-energy surface was recorded for several tem-
peratures and plotted in the form of a histogram of binding
energies which changes with temperature. These distributions
are depicted in fig. 3 for the 13-atom cluster and for the six
temperatures labelled (a)}( f) in fig. 2(A). At low temperatures
the icosahedron (peak at low potential energy) is more fre-
quently visited than the isomers above the gap AV [fig. 3(a)].
As the temperature increases, vibrations allow the cluster to
changp more easily from one isomeric form into another,
resulting in more visits to potential energies above the gap
AV [fig. 3(f)]. There is a maximum experimental tem-
perature above which evaporation is observed in less than
900z, defining an energy threshold for evaporation. This
threshold is 0.4¢ for the 13-atom cluster. Only 44 distinct
1somers out of the 987 known were visited during the length
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Fig. 4. Average fraction of visited minima f plotted as a function of
temperature for the 12-atom cluster. The full line corresponds to eqn
(4)(6); the dashed line corresponds to ¥ =% (temperature
independent); the dotted line shows the limit to the random model;
points are the computer-simulation values given in table 1. The tem-
perature is in reduced units.

of the runs. Equivalent runs started from different initial con-
ditions will probably populate several other isomers. Tables 1
and 2 contain the relevant data for the 12-, 13- and 14-atom
clusters. Labelled thermodynamic states refer to the points
shown in fig. 2. Each row provides the data obtained from
averaging quantities over the time interval shown in column
2. Columns 3 and 4 give the temperature and f the fraction of
minima lying above the gap AV which are visited from a
total of n visits.

The temperature T, where f(T)= 3 is identified as the
melting temperature. Thus, at T} = 0.3¢ the 13-atom cluster
visits the icosahedron and those minima above the gap an
equal number of times. This criterion is an alternative
approach' to deciding when a cluster melts. The value of
T,, obtained in this manner is in agreement with other estima-
tions.!~#+17:18 The open points in fig. 1 correspond to the
values of f reported in table 1. A fit of eqn (4){6) to the
molecular-dynamics data for fyielded the value of the param-
eter o, i.e. AVo' = 7.62e. The 12-atom cluster visited eight
different minima, and melts at T* = 0.24. However, since fis
only 0.67 when evaporation occurs, the cluster is never really
‘liquid’. In fig. 4 we plot the result coming from eqn (4)~6)
and the data (open points) from the experiment. A fit using
the data reported in table 1 yielded AVa' = 5.54. The
14-atom cluster also accessed eight different minima before
the evaporation threshold. It is clear from the data of table 2
that the 14-atom cluster evaporates one atom at low tem-
peratures. Hence, f does not reach the value of 1. Evapo-
ration takes place before the cluster effectively melts. The
14-atom cluster cools in the process of evaporation and even-
tually forms the icosahedron and liberates one atom.

Discussion

We stated that the model gives a good description of the
melting process for clusters where AV <6 and Q is large.
These clusters can exhibit a melting curve such as shown in
fig. 1 and 4. The agreement between theory and computer
experiment is excellent. However, the clusters might melt or
evaporate before melting. Clusters melt if f > 1 before evapo-
ration. That is the case for the 12- and 13-atom clusters. On
the other hand, if f < 1 when the evaporation threshold is
reached, then the cluster never melts. Such is the case for the
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14-atom cluster. Therefore, the measurement of f(T) is also
excellent in establishing whether or not a cluster melts.

Great interest also surrounds the interpretation of magic
numbers, clusters that are recorded with large abundance in
mass spectrometry or photodetachment experiments. Specifi-
cally, one could seek to identify magic numbers with the rea-
lization of the class of clusters described here and a sharp
change of f with temperature. If this condition were satisfied
for a given N, but the cluster with N + 1 atoms did not melt,
then N would be a magic number.

In our model K accounts for the contribution to the tran-
sition due to those regions of configuration space outside the
catchment area of the minima. Little is known about these
regions. For this reason we have adopted a conservative
approach by considering the limiting value for this energy
which favours ‘dimers’ (BB or II) in the states of the corre-
lated walk. Suppose, however, that we knew more about the
saddles, or other intricate paths. In that case it would be pos-
sible to change the value of K such as to favour larger (or
smaller) sequences of Bs. We suspect that such will be the
situation in large clusters. If K > 0, smaller values will give
rise to sharper transitions.

It is instructive to compare the melting temperatures
obtained with this model to those obtained using Linde-
mann’s’® rule. Within the harmonic approximation, the
mean-square displacement of atoms about their equilibrium
positions corresponding to the global minimum is given by

+ 3N~ 6

Gy =2 75" L ®)
m s=1 Wi

where w, are the normal-mode frequencies. If a is the average
distance between atoms for the isomer corresponding to the
global minimum, then Lindemann’s rule states that when the
temperature is such that ((6u®)/a?)!/? ~ 0.2 the cluster melts.
In the case of the 13-atom cluster, we have calculated the
normal modes of the icosahedron,!’?° ie. Y (@) %=
0.268872. The melting temperature according to this criterion
is 0.19¢, which is a very low estimate. This criterion does not
take into account the anharmonicities. Therefore, in small

clusters the criterion seems inadequate.

When the requirement AV < is satisfied, but Q ~ 1, the
model gives rise to a broad transition. In this case it is pos-
sible to describe a second class of clusters, specifically systems
presenting only one, two, or three very well defined isomers
(one, two or three minima) below the evaporation threshold.
The transition is very broad in this case. These clusters
behave more like molecules, and therefore they can be treated
as such. Temperature changes of the conformers can be
understood on the basis of isomerization; hence the tem-
perature variation of the isomer concentration is calculated
directly from the change in free energy, probably very accu-
rately in the harmonic approximation. The extreme situation
is a cluster with only one stable conformation that evaporates
if it reaches a sufficiently high temperature.

A third class of clusters emerges according to the previous
analysis, for which AV & d and many local minima can be
accessed. These clusters are quasi-amorphous; the hyper-
surface in configuration space is shallow. Clusters belonging
to this class need, of course, a much closer examination, and
we cannot consider them within the work presented in this
paper. In this case, further-neighbour correlations might be
needed.

Conclusions

In this work we have presented an alternative approach to
the interpretation of melting in small clusters. The state of

s
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order can be associated with the number of times the cluster
is found to access the global minimum of the potential
energy. The state of disorder is associated with f(T), the
number of times the cluster accesses all other local minima of
the potential-energy surface. Melting can be observed by fol-
lowing the changes with temperature between these two
states. This function, f(T), presents an S-shaped behaviour
defining the melting temperature T,, when its value is one
half. This is a novel criterion to locate T, for a selected kind
of cluster in which AV < 6 and Q is large.

The sigmoid shape of f(T) is characteristic of a process
where ‘cooperativity’ is important. A measure of how co-
operative a phenomenon can be is given by the slope of f(T)
at T, ie. ~d'/yy. The larger the slope, the more cooperative
is the process under study. Cooperativity in this case indi-
cates that when the cluster visits one local minimum above
the gap, it is easier to access another local minimum in the
next visit. The values of the parameters in this theory are
given in terms of cluster quantities (AV, 6, Q) and extracted
from the computer experiment (T,,, «).

We have emphasized the measurement of a quantity such
as f because it can eventually be observed in the laboratory.
Suppose we were able to measure in the laboratory the IR or
Raman spectra of the normal frequencies of a 13-atom cluster
as a function of their temperature. It would be possible to
detect how the normal modes change with temperature.
These intensities would be proportional to f.

I thank Prof. Hans C. Andersen for very interesting com-
ments concerning this model. This research was partially sup-
ported by Consejo Nacional de Ciencia y Tecnologia, Mexico
(PCEXCNA-050838).

References

1 D. J. McGinty, J. Chem. Phys., 1973, 58, 4733; W. D. Kristensen,
E. J. Jensen and R. M. J. Cotterill, J. Chem. Phys., 1974, 60,
4161; C. L. Briant and J. J: Burton, J. Chem. Phys., 1975, 63,
2045; R. D. Etters and J. B. Kaelberg, Phys. Rev. A, 1975, 11,
1068; J. B. Kaelberer and R. D. Etters, J. Chem. Phys., 19717, 66,
3233; V. V. Nauchitel and A. J. Perstin, Mol. Phys., 1980, 40,

J. CHEM. SOC. FARADAY TRANS,, 990, VOL. 86

1341; N. Quirke and P. Sheng, Chem. Phys. Lett., 1984, 110, 63;
R. S. Berry, J. Jellinek and G. Natason, Phys. Rev. A, 1984, 30,
919.

J. Jellinek, T. L. Beck and R. S. Berry, J. Chem. Phys., 1986, 84,
2783; T. L. Beck and R. S. Berry, J. Chem. Phys., 1988, 88, 3910.
J. D. Honeycutt and H. C. Andersen, J. Phys. Chem., 1987, 91,
4950.

E. Blaisten-Barojas and H. C. Andersen, Surf. Sci., 1985, 156,
548; E. Blaisten-Barojas and D. Levesque, Phys. Rev. B, 1986,
34, 3910; E. Blaisten-Barojas, I. L. Garzon and M. Avalos-Borja,
Phys. Rev. B, 1987, 36, 8447.

U. Even, N. Ben-Horin and J. Jortner, Phys. Rev. Lett., 1989, 62,
140.

B. H. Zimm and J. K. Bragg, J. Chem. Phys., 1959, 31, 526; J. A.
Schellman, J. Phys. Chem., 1958, 62, 1485; J. H. Gibbs and E. A.
DiMarzio, J. Chem. Phys., 1959, 30, 271; T. L. Hill, J. Chem.
Phys., 1959, 30, 383; K. Nagai, J. Phys. Soc. Jpn, 1960, 15, 407;
A. Miyake, J. Polym. Sci., 1960, 46, 169.

S. Fujita, E. Blaisten-Barojas, M. Torres and S. Godoy, J. Chem.
Phys., 1981, 75, 3097.

For a detail treatise containing reprints of the original contribu-
tions see D. Poland and H. A. Scheraga, Theory of Helix-Coil
Transitions in Biopolymers (Academic Press, New York, 1970).

C. J. Thompson, Mathematical Statistical Mechanics (Princeton
University Press, Princeton, 1972), chap. 7.

F. H. Stillinger and T. A. Weber, Kinam., 1981, 3A, 159; F. H.
Stillinger and T. A. Weber, Phys. Rev. A, 1982, 25, 978.

I. L. Garzon, M. Avalos Borja and E. Blaisten-Barojas, Phys.
Rev. B, 1989, 40, 4749.

M. R. Hoare, Adv. Chem. Phys., 1979, 40, 49.

M. R. Hoare and J. A. Mclnnes, Adv. Phys., 1983, 32, 791.

J. A. Northby, J. Chem. Phys., 1987, 87, 6166.

I. Oksuz, Surf. Sci., 1982, 122, 1.585.

L. Verlet, Phys. Rev., 1964, 159, 98.

N. Quirke, Mol. Simulation, 1988, 1, 207.

J. Jorner, D. Scharf and U. Landman, in Elemental and Molecu-
lar Clusters, ed. G. Benedek, T. P. Martin and G. Pacchioni,
Springer Series in Materials Science (Springer-Verlag, Berlin,
1988), vol. 6, p. 148,

F. A. Lindemann, Phys. Z., 1910, 11, 609.

L L. Garzon and E. Blaisten-Barojas, Chem. Phys. Lett., 1986,
124, 84, ;

/
/

Paper 9/03633D; Received 22nd August, 1989





