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The melting of 1 3-atom clusters interacting via Lennard-Jones potentials has been revisited
using molecular dynamics coupled to steepest descent quenches. A procedure was devised 1o
aceount for the fraction of times the global and local minima of the potential energy surface
are accessed during a long trajectory. This quantity presents a sigmoid shape. A phenom-
enological model of melting is given in térms of a correlated walk that maps the short time
excursions among the plobal and local minima in configuration space. Comparison between
the simulation results and the theoretical model shows that the melting transition is well
described in terms of the temperature changes of the feaction of high energy minima accessed
during the cluster trajectory. Cooperativity is clear from the 5 shape of this guantity, i.e, the
acosss to 4 local minimum favours the access to other local minima,
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Alihough the melting transition in Lennard-Jones
clusters was studied severzl years ago [1], many
features are nod yet understood. Recent malecular
dynamics simulations [2, 3, 4] have shown thal very
long time averages are neéeded in order to compensate
for the large thermodynamic fluctuations character-
istic of systems with a few atoms. Melting in finite size
systems is commonly described in terms of & property
that changes abruptly with lemperature between two
extreme values [5]. The Ising and related models have
been applied with suceess to a number of finite sysiems
such as polymers or biological melecules [5, 6] We
show here that this model can also be applied to
clusters. A procedure 15 devised 10 measure the fraction
of times the global or the bocal minima of the potential
energy are accessed during a long trajectory. This
quantity changes abrupiely with temperature —at low
temperatures the system is always found to access the
global minimum, whereas at high temperatures the
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systern accesses the local minima. At the transition
temperalure the system i found to access hall of the
times the global minimum and balf of the times the
local minima, Exfensive molecular dynamics simu-
lations were performed on the 13-atom cluster Lo
measure this quantity, Furthermore, we give a phe-
noemenclogical description of the 1emperature behav-
ior of this gquantity based om 3 correlated walk
maode] [7].

The systerm is a [3-atom cluster where the atoms
interact via Lennard-Jones potentials with constants i,
&. The configuration space of this cluster is well known
[#]. Mamely, the global minmum of the potential
energy s the wosabedron and there are at least 987
local minima corresponding to stable somers, The
binding energy of these conlormations can be cast into
a disteibution where the keosahedron stands well deta-
ched by a gap of 285 from the isomers with lower
binding cnergies. We will refer to this gap as AV,

Constant energy molecular dynamecs was used by
solving the Mewton equations of molion with a time

step of 0001, 7= /mri/c. The adopted units of energy
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and distance were ¢ and r,=2'%¢. Temperature was
defined as kT=2{E,; >/(3N — 6), with (E,;,) being the
average kinetic energy without the center of mass and
angular momentum contributions. It will be given in
units of e/k (k=Boltzmann’s constant).

The computer experiment was started from a
frozen icosahedral cluster. Next, the cluster was heated
in a steplike manner [4]. The resulting total energy per
particle as a function of temperature is shown in Fig. 1.
[n reaching the loop-shaped region of the curve, the
cluster is hot enough to rearrange its bonds. In the
course of a highly excited asymmetric vibration,
the bond between one of the surface atoms and the
central atom breaks. This process gives rise to the first
isomer above AV, i.e., a structure where the atom that
pops out decorates the face opposite to the hole left
behind [8]. Now it is easier for the cluster to rearrange
its atoms in the many other mechanically stable iso-
mers with binding energies above the gap AV. There-
fore in the loop shaped region of Fig. 1 the cluster is
accessing other minima besides the icosahedron.

Our overall approach is to devise a measure of the
way the cluster accesses all these isomers in configur-
ation space and how this process changes with tem-
perature. To fulfil this goal, each of the states labeled a
to fin Fig. 1 was propagated for 300t more in the
following way. Every 5t the molecular dynamics run
was stopped and a quench following steepest descent
paths drove the system to one of the minima of the
potential energy V. A particular minima is visited
every 5t on the course of the 300t trajectory. These
visits were collected in histograms as shown in Fig. 2
for the temperatures labeled a-f in Fig. 1. At low
temperatures the icosahedron (peak of low potential
energy) is visited more frequently than the isomers
above AV. As temperature increases, vibrations are
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Fig. 1. Total energy as a function of temperature for the 13-atom
cluster

excited allowing the cluster to restructure more easily
from one isomeric form into another. Therefore, it is
clear that temperature favors the access to minima
above the gap. The fraction { ) of minima above the
gap visited out of 60 visits changes abruptly from zero
at low temperatures to one at high temperatures.

Let us consider a model cluster and speak of an
intact icosahedron or broken icosahedron during a
length of observation segmented in picces. An
intact icosahedron is realized when the global mini-
mum is visited, whereas a broken icosahedron occurs
when any local minima above the gap AV is visited.
The state of the system in the jth segment of time will
be represented by p; (#;=1 for broken icosahedron
and p;= —1 for intact icosahedron). Thus, the number
of broken icosahedra is Np{p}=3Z7_(I+4,) in a
given configuration {u}={g, ... p,}. An ordered
configuration is obtained when all x’s are — 1. On the
contrary, disorder increases the more 1's appear in a
given configuration {u}. Further, let us propose a
model energy in terms of the melting temperature T,,,
the gap AV and & the mean nearest-neighbor energy
spacing between the potential energy of those local
minima above A}:

M=
M=

E(T)= —B(T)

i

#i—K

1 i=1

Ml vy ()

where B(T)=(T—T,)AV/T and K = oA V'/6. Here o is
a parameter. The partition function is easily solved in
terms of the eigenvalues of the transfer matrix [6] such
that the fraction of broken icosahedra is

Ny 1 sinh(B/kT)
== —— = 1 B e e ————— 2
=% 2( +\/Fmsinm(3/ﬂ)> @

B(T) has the meaning of binding in the system and K
stands for the correlation between neighboring seg-
ments. When K -0, either because ¢ -0 or AV -0, all
isomeric forms are uncorrelated in time. We recover
the random model in which {f> changes smoothly
with temperature. When K is large the quantity (£
becomes a step function, i.e., {/>=1 when B>0 and
{f>=0 when B<0. The bulk limit is obtained when
00, thus K~ o0,

Now we refer to the computer experiment and
assign values to the parameters as supported by the
simulation. Thus, AV=0.220, T=03, §=0.011 and
0=0.022. Substituting these values in Egs. I, 2, the
fraction of broken icosahedra can be calculated ana-
lytically. The resulting curve is shown in Fig. 3 (con-
tinuous line) and compared to both the experimental
evidence coming from the simulation (dots) and to the
random model (dashed line). The agreement between
theory and experiment is striking counsidering the
simplicity of the model.
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Fig. 2. Number of visits to the potential energy minima for the states labeled a—fin Fig. 1
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Fig. 3. Fraction of visited minima as a function of temperature

This interpretation of melting in clusters is different
to what has been suggested up to now [1,2, 3} The
approach is phenomenological but instructive. It
equates the structural information obtained in n snap-
shots along a trajectory in phase space with a polymer
containing N broken icosahedra and n— N intact
icosahedra. In this model clusters can be classified into
three classes. The first class refers to cluster where
there is an energy gap AV between the binding energy
of the most stable isomer and that of the many other
isomers. Also, the distribution of binding energies of
these isomers is such that the mean nearest-neighbor
energy spacing & is very small compared to AV.
Melting is observed in this class of clusters. The second
class refers to clusters where there is no energy gap and
therefore AV> 8. In this case we could speak of an
amorphous cluster and melting is not observed. Clus-

ters in the third class have only few, well known
isomeric forms. This case can be understood on the
basis of isomerization.
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