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ABSTRACT: The correlated walk model (CWM) of impurity diffusion
in metals is used to obtain the diffusion coefficient D of binary metal

mixtures. A close analytical expression of D as a function of impurity
concentration and temperature is given by providing a parametrization
of the step probabilities inherent to the CWM. An application to diffu-
sion of Al, Be, Cd, Si, Sn in alpha-solid copper is given to show the
possibilities of the method.

INTRODUCTION

The diffusional processes in solid state materials are determinant of the rate at
which phase transitions and other structural changes occur. The substitutional atoms
in binary alloys introduce changes in the diffusional properties of both solute and host
matrix atoms (1). The usual effect of substitutional impurities is to increase the rate
of diffusion (2,3, 4). There are, however, some cases where the contrary effect is
present (5). The influence of impurity concentration on the self diffusion of host ma-
trix atoms is correspondent to the solidus line in phase diagrams (5).

The amount of experimental work dealing with the effect of concentration of alloy-
ing elements on the diffusivities is substantial. In smaller scale, there have been several
attempts to provide theoretical explanations especially for the increase of the rate of
diffusion with impurity concentration (1, 6). The purpose of this work is to report
on the use of the correlated walk model (CWM) of atomic diffusion (7, 8) that leads
to analytical expressions of the diffusion coefficient D as function of the relative
concentration of binary metal mixtures. Further comparison to alpha-solid  solu-
tions of copper (9, 10) is based on a proposition of the probabilities pertaining to
the theory. The CWM, as it stands today, was developed using a nonsophisticated
memory that yielded final expressions valid in the low concentration limit. This hm
it might be far in a phase diagram from any structural phase transition and yet it is
important since it governs the onset of a process.
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THE CORRELATED WALK MODEL

The connection between a "walk” and a diffusion process is rather obvious if the la-
ter is pictured by atoms migrating on a lattice of a given point symmetry and where
the atom jump rate is the same everywhere on the lattice (7). In order to jump,
the migrating atgm overcomes an energy barrier before moving to a new site. Since
the atom carries linear momentum, the jump probabilities are correlated when each
jump keeps memory of how the previous jump was done. Once the atom moves,
it may jump over several sites in succession, adquiring a momentum that now corre-
lates those sites. The CWM describes such correlated motion in terms of step proba-
bilities: 1) the moving probabilites a« , f , y ; 2) the temporary come-
to-stop probability o and; 3) the non-preferent direction start-to-move probability
u, or equivalently, the remain at the site probability o’ By using the relation be-
tween the atomic mean-square displacement and the diffusion coefficient D for a pu-
re metal (11), it was obtained (7)

S (A)
b = €Y
1+ o(-0")"
where S(A) = 1+A(1-A)'l and A = A(a,$B,v)isa function de-

pending mostly on the lattice point symmetry. The denominator in Eq. (1) points
out the difference between random walks (12) and the CWM in what concerns the
actual atomic diffusion. For random walks the denominator equals one.

Suppose that a second component is introduced in such a way that the new at-
oms do not disturb the host lattice symmetry and are distributed uniformly over the
solid with concentration c.  Consider now that one atom of the second compo-
nent starts to move. If the impurities generate significant change in the come-to-
stop (o) and stay-stationary ( ¢ ') probabilities only, the denominator in Eq. (1)
may be replaced by

1 +c¢%i + 1-¢990_ % — ¢ %i (-0 %0
l-a'i 1-0'0 l-o'i 1-0'0 )

The four terms here correspond to the following processes: i) the impurity ar-
rives and leaves with no intermediate stop at any site of the lattice, ii) it arrives (and
eventually leaves) at an impurity site which occurs with probability ¢ and is repre-
sented by o, o0}, iii) it arrives (and eventually leaves) at a regular site of the host
lattice wich occurs with probability (1 - ¢) and is represented by 0y 0o and iv) it
arrives (and eventually leaves) either at an impurity site or a host site. Note that
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the come-to-stop (0,,) and stay-stationary (o) probabilities of the host lattice are
not those of the pure metal, but rather those obtained when ¢ > 0. Introducing Eq.
(2) in Eq. (1) and rearranging terms the following expression is obtained for the dif-

fusion of impurities in an impure metal

b = _ S(a) 1 3
, 2
1+ o(l-0y) l-cay + ¢ a
where
_ -1
a;= 1|1 oo 00 Ui 00 oi
! + -1+
i l-oo_ l-0, l-a’1 -0, 1-0;
i -1 @
a, = 1+ % % 9
L l~o'04 l-0, l-o'i

PARAMETRIZATION OF THE STEP PROBABILITIES

@ Next let us propose the following model for the step probabilities in Eq. (3) and
4):

o = exp( -EB /| KT) - exp ( -EO | KT)
o, = lexp(-E /KT) (%)

where T is the temperature, K is Boltzmann § constant, E, is the energy at the
bottom of the potential barrier that surrounds a diffusing impurity and E  is the
energy at the barrier top. When the metal becomes impure, E may be modified to
be Ei' This new energy can be either, larger or smaller tha’E . In the first
case, Ei > E0 0

Q
I

= exp(-EB /KT) - exp(-Ei/KT) - o
(62)

exp ( -E0 /KT) - exp( -Ei / KT)
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in the second case, Ei < Eo

o, = 9, -[exp(-EB/KT) - exp(-Ei/KT)]
(6b)
= exp( -Ei | KT) - exp( -Eo | KT)
For both cases the following definition is proposed for oi'
oi' = 1 - exp( -E‘.i {KT) (6¢)

This modified stay-stationary probability is larger than o’ if Ei > Eo (smaller
if E. < E). Interms of E_, E. and Eg itis possible To define the ~ following
enerﬁy diffefences o1

]
[es]
o]

Q

o o B

)

m
m
tm

Qi i B

as a measure of the energy necessary to activate diffusion in the metal without impuri—
ties (Qo) and in the mixed solid (Qi)'

After substitution of Eq. (5), (6) and (7) in Eq. (3) and (4) the diffusion coeffi-
cient takes the form

D = S@) exp (Q,/KT
1 -ca t c2a2 ®)

where, if Ei > E0 and thus Qi > Q0

o = exp [(Qi-QO)/KT][1-26xp(-Q0/KT) + exp (Q, /KT)]

®

@, = exp [(Qi"Qo)/KT] -1-exp [(Qi-ZQO)/KT]+exp (.QO/KT)
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and if Qi < Qo

Q
Il

2-exp (Q/KT) - 3exp (Q)/KT) + exp [(Q-20)/KT]

(10)

a, =1 -exp(-QO/KT)-eXp[(Qi-Qo)/KT]+eXP[(Qi-2QO)/KT]

IfQ >>KT, Eq. (8) gives an increasing diffusion coefficient with increasing con-
centratign, ifQ.>Q . When Q. < Q an increase or decrease of D can be ob-
tained as a function SF concentratioh.

To summarize, Eq. (8-10) give the diffusion coefficient of impurities in an impu-
re metal in terms of S(A) and two parameters: Q,, or energy necessary to iniciate
the diffusion process in a solid with c>o impurities, and Q; the excess energy  ne-
cessary to trigger the process when the concentration c is small but finite.

DIFFUSION IN ALPHA-SOLID SOLUTIONS OF COOPER

Based on the proposition of the previous section, a comparison to some experimen-
tal values results possible. For small impurity concentration (c ~ 0.04) there are
data for several binary solutions as the classical results reported by Rhines et. al.

(10) for solid solutions of Al, Be, Cd, Si and Sn in alpha-copper. This type of ex-
periments are usually fitted to an Arrhenius expression D = D exp (-Q/KT)
where both D and Q are concentration dependent. Alternatively, the previously de-
rived expressions (8) to (10) give an explicit expression of D as a function impurity
concentration ¢ and temperature. The quantities Qo, Qi and S are  concentration
and temperature independent in the range T 1 100" °C.

In Table I are reported the values obtained by fitting the experiments to Eq. (8).
For all impurities it comes out that Q; > Q, so expressions (9) where used in addition
to Eq. (8). The fit was carried out as follows. First, at the experimental value of
T = 800°C, S (A) and Q, were taken equal to those reported for copper with ¢ = 0
impurities (2). Secondly, Q; was obtained by fitting the c = 0.04, T = 800°C value of
D.

Lu Fig. 1 it is shown the variation of D with concentration for ¢ < 0.04 and in Fig.
2 the temperature variation of D is reported at a fixed concentration of the solid so-
lutions. As expected, Fig. 1 shows an increase of the diffusion coefficient. In Fig.
2 it is clear that the log D plot versus T is not linear in the range of temperatures
shown in the figure.
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Figure 1. Increase in the diffusivity of impurities in copper as a function of concentration.
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Figure 2. Curves Ln D versus T-1 for the different alloying elements, all of them at ¢ = 0.04
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The CWM expression for the diffusion coefficient examined in this paper seems to
be quantitatively successful in representing the process of diffusion in alpha-copper so-
lid solutions. The experiments chosen for this comparison are old but classical in the
field of metallurgy. The model has the advantage of giving explicitely a dependence
of D with impurity concentration and temperature. The analytical expression contains
three parameters whose interpretation is clear, i. e., S(D), associated to the point
symmetry of the solid, Q, or the energy necessary to start the diffusing processin a sol-
id with ¢ > 0 impurities, Q; the excess (or defect) energy when the metal has impu-
rities.
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