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The sequence of conformatlons a cluster assumes as it grows from a trimer into a thirteen-atom aggregrate under a given 

model potential has been studied. The model potential proposed is a construction composed of a van der Waals pairwise term 

and a three-body term composed of the triple dipole contribution and the exchange overlap contribution. A parametric study 

of the thermodynamically preferred structures is given. After reaching a boundary between regions in the parameter space, 

equilibrium mixtures of isomers with different packings are obtained. The normal frequency spectrum is given for clusters up 
to thirteen atoms. 

1. Introduction 

The effects of dispersive three-body interactions 
have been analyzed [ 1 ] and abrupt changes in the en- 
ergetically most stable structures were predicted in 
the early stages of atomic cluster aggregation. On the 
other hand, analytical functions have been developed 
to represent the short-range region of a three-atom 
potential energy surface [2,3] . The prime purpose of 
this Letter is to describe and extend our knowledge of 
the important configurations of monoatomic systems 
of up to thirteen atoms subject to non-additive inter- 
actions. Particular emphasis is laid on the effect of 
two types of three-body interactions, the triple dipole 
term and the exchange overlap term, on the early stages 
of cluster growth at low temperature. The study is a 
parametrical analysis of the three-body interaction 
that allows us to identify regions of the parameter 
space for which very different aggregations can be 
modeled. The second purpose of this Letter is to point 
out the extreme importance that a nonadditive inter- 
action potential (or family of potentials) has on stabi- 
lizing structures other than close packed. It therefore 
allows for the possibility of modeling mixtures of 
isomers of different packings. 

2. Three-body potential 

Let us consider a system of N identical atoms or 
molecules whose total potential energy function $(rl, 

‘2, . . . . rN) is expanded as a sum of n-body potentials 
vn : 

N 

. . . rN) = 

i+i 
N 

1- 

t’ Z Vs(ri,rj,rk)+ ... 
3! i,j,k 

i# j#k 

V,(ri, ‘i, ...,r,) + ... . (1) 

i#j#k...#m 

It is believed that this series is convergent and that 
the main contribution to the potential energy is given 
by the pair potentials V2. Then, higherarder terms 
may be treated as corrections to the former. Never- 
theless, these “corrections” are responsibleifor the 
saturation of the chemical bonds [4]. In this calcula- 
tion the first two terms in the expansion of r#~ are kept 
the two-body interaction is represented by a sum of 
Lennard-Jones potentials, whereas the model for V3 
is a construction based on an analysis of the overlap 
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repulsion for trimers of closed-shell atoms [2,5] to 
which the usual triple dipole energy [6,7] is added. 
Specifically, the dimensionless form of the model po- 
tential proposed is 

where 

V3(rii, rik, rlk) = {-A exp[-a(rv + rg + r,7)1 

+ C9/(r~r~rl~)3~f~~ 

and 

(3) 

fak = i + 3 cam eiik ~0~ e,, cos ekii , (4) 

where A and (Y are positive parameters measuring the 
intensity and range of the exchange overlap term. The 
positive constant C, stands for the intensity of the 
triple dipole term. The BtiR are the angles in a triangle 
formed by three atoms: between i and k subtended at 
vertexj, etc. Reduced variables are used throughout, 
such that distances are measured in units of r. = 2116 u 
and energies in units of E, where u and E the Lennard- 
Jones constants. 

The trigonometric part of eq. (3), f&, discriminates 
in favor of linear arrays of three atoms if the function 
in braces is positive. On the contrary, when in eq. (3) 
the combination of exchange overlap plus triple dipole 
terms is negative, then the equilateral triangle charac- 
teristic of close packed structures is the most stable 
trimer. By varying the intensities of the two contribu- 
tions to V3, A and C,, the effect of non-additive po- 
tentials on minimum energy cluster configurations 
can be analyzed parametrically. 

The function approximated by a combination of 
sums of pair and triple potentials is indeed an ex- 
trapolation of the quantum results for clusters larger 
than trimers, since typical cluster distances are longer 
than those used in the ab initio calculations [5]. The 
conclusions based on the use of this construction, i.e. 
eqs. (2)-(4) are thus stated subject to these qualitlca- 
tions. 

3. Cluster conformations 

The aggregation atom by atom yielding the sequence 
of three- to seven-atom clusters plus the thirteenatom 

cluster reported here corresponds to a fmed value of 
(Y = 4.5 (reduced units). This is an intermediate value 
among those fitted for Be, Ne [2] and He [8] based 
on ab initio calculations, i.e. 4.1,5.2 and 5.8, respec- 
tively. Once a value for the parameter OL is chosen, 
then the range of variation of A, the exchange overlap 
intensity, was determined such as to give a positive 
and monotonically decreasing repulsive term for each 
pair in a trimer. An upper bound of A < 4.3 X lo4 is 
reached. Larger A values yield a well in the function 
made up by the sum of the pair 1/r12 term plus the 

C!3 
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Fii. 1. Minimum potential energy per atom, as a function of 
the three-body parameter C.J of eqs. (2)-(4). Plots show the 
sequence of three- to seventltom clusters. FuII lines corre- 
spond to the value A = 0, dotted lines to the value A = 42373. 
The structures drawn in region I indicate a 3-D cluster growth. 
Region II is made up of 2-D clusters. Region III shows a linear 
aggregation. 
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exchange overlap contribution of a third atom placed 
at unit distance form both atoms in the pair. Other (Y, 
A combinations were also tried; the results obtained 
were all qualitatively the same. The chosen range of 
variation of the triple dipole term Cg is 0 < Cg < 1.2, 
to ensure three-body energies not larger than 15% of 
the two-body energies in a triplet of atoms. In figs. 1 
and 2 we display the results of minimizing the poten- 
tial energy of the various clusters under the two-pa- 
rameter family of V3 potential functions given in eqs. 
(2)-(4). A quasi-Newton algorithm was used for find- 
ing the minima [9] . For A = 0 (full lines) three regions 
of the parametrical space were already reported by 
Halicioglu [ 1 JO] . For A # 0 (dashed lines) these re- 
gions are shifted towards larger values of Cg . Region I 
is characteristic of the close packed cluster growth, 
resulting in a cluster sequence extensively explored 
by Hoare and Pal [11,12] , i.e. equilateral triangle, 
tetrahedron, bipyramid, octahedron, pentagonal bi- 
pyramid, . . . icosahedron. This growth sequence is 
stabilized with increasing A and destabilized with in- 
creasing Cg . Region II is reached in the interval 0.4 G 

N=13 4 
t I I I 

0 .2 .4 .6 

c9 

Fig. 2. Minimum potential energy per atom of the thlrteen- 
atom cluster as a function of the threebody parameter C9 of 
eqs. (2)~(4). Full lines correspond to the value A = 0, dotted 
lines to the value_4 = 42373. Regions I and II are shown. 

Cg < 0.8 leading to a twodimensional aggregation of 
clusters under triangular symmetry. Again in this re- 
gion the exchange overlap (A # 0) effect is to stabilize 
the various 2-D clusters. Region III is typical of a one- 
dimensional growth, all clusters aggregate in a linear 
fashion. Here the exchange overlap effect reverses, 
producing more unstable clusters with increasing A, 
as is shown in fg 1. The thirteen-atom cluster remains 
planar up to Cg = 1.2. 

The above observations on the cluster aggregation 
are based on the minimization of the potential energy 
per particle (or binding energy) valid only at zero tem- 
perature. At finite temperatures the entropy contribu- 
tion to the Helmholtz free energy F might not be neg- 
ligible [ 131, since the system has enough kinetic ener- 
gy as to visit many minima of the potential energy sur- 
face. The vibrational contribution to the free energy 
arising from only the lowest minima analyzed in this 
work can give an insight at very low temperatures of 
how this function changes. For large T values more 
minima will contribute to the free energy producing 
deviations from the very low T limit [3] . In the har- 
monic approximation and in reduced units, the free 
energy is 

F=Eo 

+cI {$h*w~+T’ln[l-exp(-h*o;/T*)]), (5) 

where h* = hire, 7 = (mr$e)1/2, T* = k, T/E and or 
= WiT are the normal-mode frequencies about the E. 
minimum of the potential energy surface. Low-fre- 
quency modes produce a temperature-dependent 
negative contribution to the free energy. Therefore 
clusters possesing low-frequency modes have a tenden- 
cy to be preferred at high temperatures versus other 
isomers presenting high-frequency modes. Such state- 
ment is reinforced if h* is the smallest from a set of 
values corresponding to materials treated under the 
same model potential. The tendency of the Cg term 
in the three-body potential is in fact to produce low- 
frequency modes. This behavior is clearly shown in 
fig. 3, where the normal-mode frequencies of the clus- 
ters shown in figs. 1 and 2 are plotted for different 
cluster sizes, A = 0, and four values of the Cg param- 
eter. In all cases the dashed lines how the normal- 
mode frequencies for the same N and Cg and A = 
42373. Thus, the effect of the exchange overlap term 
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Fig. 3. Normal-mode frequencies about the minima described in fiis. 1 and 2, for different values of the C9 parameter characteristic 
of regions I to III. The heights 1 to 5 indicate the degeneracy of the modes. Full lines correspond to the value A = 0 and dotted 
lines to A = 42373. The thirteencluster is 2-D for both C9 = 0.6 and 1 .O 
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is to increase the normal-mode frequencies in regions 
I and II and to decrease them in the linear cases. This 
behavior is expected since square frequencies depend 
linearly on the repulsive core of the potential. In re- 
gions I and II there are very few three-atom “col- 
lineations”, the fqk of eq. (3) is a positive function 
and therefore the exchange overlap term softens the 
repulsive core. In region III all triplets of atoms are 
collineations producing a harder potential core. The 
heights of the lines at the vibrational frequencies in- 
dicate the degeneracy of the modes (1 to 5 depending 
on the cluster). Near the boundary between two of 
the parametric regions in figs. 1 and 2, several isomers 
may have minimum potential energies very close 
among them. For instance, let us consider the N = 13 
cluster with parameter Cg = 0.4 and A = 0. This is a 
crossing point in the 9 versus Cg plot where three 
isomers coexist, the icosahedron, the cuboctahedron 
and the 2-D triangular cluster, as shown in fg 2. When 
C, < 0.4, the cuboctahedron is not a minimum con- 
formation of the potential energy surface. The icosa- 
hedron stops to be a minimum structure for Cg > 0.5, 
whereas the 2-D triangular cluster is a minimum con- 

formation starting at Cg > 0.3, The exchange overlap 
term withA = 42373 shifts the crossing point from 
cg = 0.4 to 0.43. 

It is interesting to see under what circumstances a 
relative concentration of several stable forms can co- 
exist in thermal equilibrium at low temperatures. In 
fig. 4a is shown the Helmholtz free energy per par- 
ticle as a function of temperature for the same iV = 13 
clusters as in fg. 2, with Cg = 0.4,A = 0 (full line). In 
the temperature range studied the free energies of the 
three isomers are very close. The exchange overlap 
term contributes more to the 3-D conformation and 
at very low temperatures. Indeed, in frg. 4a the dashed 
line shows the free energy of the icosahedron for A = 
42373, the cuboctahedron is not shown since it is not 
a minimum. The 2-D curve for A # 0 is almost indis- 
tinguishable from the case A = 0. The relative concen- 
tration of two different isomers (Y and p, can be ex- 
pressed in terms of the difference in the free energy F 
as 

cJcp = exp(-L\FlkT) . (6) 

Eq. (6) can be generalized for more than two isomers. 
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Fig. 4. (a) Helmholtz free energy as a function of temperature for the three isomers of the thirteenatom cluster and a fixed value 
of C’, = 0.4. Full lines correspond to the value A = 0 in eqs. (2)-(4), dotted lines are obtained when A = 42373. (b) Relative con- 
centrations of the three thirteenatom cluster isomers as a function of temperature for Cg = 0.4 and A = 0 (full lines). Dotted lines 
correspond to the two isomers that survive when C’, = 0.5, A = 0 (the icosahedron is not a minimum structure of the model poten- 
tial for this couple of parameters). 

In particular for three isomers Q, 0, -y with normalized 
concentrations c, t cp t c7 = 1, it is shown in fg 4b 
how their relative concentrations change with tempera- 
ture. The curves reported correspond to C, = 0.4 and 

If 

A = 0. At very low temperatures there are drastic 
changes in a narrow temperature interval of the rela- 
tive concentration between icosahedra and cubocta- 
hedra. As temperature rises, the 2-D cluster is more 
abundant resulting in a mixture of the three isomers. 
Cg is increased to Cg = 0.5, the icosahedron is not a 
stable structure and only two isomers are left, as in- 
dicated by the broken lines of fig. 4b. At very low 
temperatures the cuboctahedron is more abundant 
than the 2-D cluster, but at T = 0.1 an equilibrium 
mixture of about 50% of each component is reached. 

The three-body model examined in this paper We want to thank Dr. T. Halicioglu for interesting 
seems to be qualitatively successful in representing discussions. We acknowledge J.L. Dounce for help in 
mixed samples of condensed clusters in different the numerical calculations. The work was partly sup- 
structural phases. For several values of the parameters ported by the CONACYT, Mexico, under contract 
this model is able to predict mixtures of close packed PCCBBNA-022643. 

88 

clusters with 2-D clusters or “rafts” [ 141 as other au- 
thors have called the latter. 

The possibility of having materials where these 
mixtures are thermodynamically allowed and where 
the relative concentration of species changes abrupt- 
ly with temperature, might explain discrepancies be- 
tween some experimental observations. In this line of 
work Yacaman et al. [15] report that 10 A clusters 
of Rh supported on SO2 have icosahedral (or deca- 
hedral) structure, whereas Yates et al. [14] propose 
that the very same clusters are rafts. 
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