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Summary

A kinetic theory of the self-diffusion coefficient D for a simple liquid is developed
in terms of the correlated walk model with the possibility of a trap. A formula for
the coefficient D is derived: D = (1/6)q(1 + 8)1 — 8)"'agu, where ao and v represent
the interparticle distance and the average migration speed respectively; 5 (<1)isthe
degree of dynamical correlation; the factor q = exp(— €p/kgT), where €, is the acti-
vation energy, represents the probability of a tagged molecule overcoming the energy
barrier €, generated by its surrounding molecules. Comparison with the experimental
results of Naghizadeh and Rice [J. Chem. Phys. 36, 2710 (1982)] for simple liquids
yields that e,/kg =318 440 609 K for Ar, Kr, Xe and (1+8)/(1 - 8)=5.8. The
obtained formula and the model presented may be used to analyze the diffusion data
for various liquids as well as the foreign-atom or vacancy diffusion in a crystal.

1. Introduction

It is well known that the general features of transport phenomena of
a gas can be understood in terms of a mean free path [ {]. For a liquid,
the concept of the mean free path for particles simply breaks down. Al-
though a unified way of treating transport coefficients of both gases and
liquids by means of the correlation function formula [2] is known, this
method requires many steps of mathematical as well as physical approxi-
mations, and does not allow a direct, simple physical interpretation. One
of the main purposes of the present study is to identify simple physical
concepts for characterizing the self-diffusion coefficient of a simple
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(inert-gas-molecular) liquid. We will approach this problem by analyzing
the experimental diffusion coefficient [3] by means of the corresponding-
state principle [3, 4], identifying the central physical concepts and
finally analyzing quantitatively the data in terms of the correlated walk
model [5].
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Fig. 1. The logarithm of the reduced self-diffusion coefficient D* =Ds'm
for simple liquids is plotted as a function of the inverse of the reduced tempe'raluxe
T*=kgTe™*, reproduced from ref. (6); the experimental pointsare due to Naghizadeh

and Rice [3]

The intermolecular interaction between inert-gas atoms (AT, Kr, Xe)
can be represented very well by the (6-12) Lennard-Jones potential with
molecular-size parameter s and energy-depth parameter €. Naghizadeh
and Rice [3], and again Tham and Gubbins [6], showed that the measured
self-diffusion coefficients D* = D(m/es?)!’? reduced in terms of 5, €, and
m (mass), for simple fluids fall quite well on a single curve inthe D* — Tj’
= Tkg/e plane in accordance with the law of corresponding states. This
behavior is shown in Fig. 1. The temperature dependence is characterized
by

D = constant exp(— €»/ksT), (1.1)

where €, is a constant possessing the dimension of energy. This may .be
interpreted as follows: Consider a reference (tagged) molecule in a liquid.
This molecule moves a distance of a few Angstrom by overcoming the
energy barrier €, generated by the surrounding molecules. By the Boltz-
mann factor argument, the probability of overcoming such an cne:rgy
barrier will be proportional to exp(— €»/kpT). The diffusion coefficient
is expected to be proportional to this probability and therefore should
show the temperature-dependence as given by (1.1).
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The idea of interpreting the diffusion in a liquid in terms of an acti-
vation energy €, was proposed a long time ago by Eyring [7] and others
[4, 8). In fact, the experimental data for the self-diffusion coefficients of
various liquids including CH,4, n-pentane, n-heptane, benzene, ethanol
and water [9] can be represented by the exponential temperature depen-
dence of the type (1.1). Despite such extensive evidence, the idea of an
activation energy has not always been accepted by all the researchers [3].
This situation may be contrasted with the case of the impurity-atom (or
vacancy) diffusion in a crystal, where a similar exponential temperature-
dependence

Dimpurixy « CXP(—' Ea/kBT), : (12)

where €, is an energy parameter, is universally observed [10]. Here, the
activation energy €, can be regarded as a constant characteristic of a
particular kind of migrating molecule (or vacancy) and the host crystal.
In contrast, the energy parameter €, for the liquid must be considered as
a mean energy barrier generated by the moving molecules, and therefore
may depend on the temperature and pressure. In this respect, the €, is
similar to the mean free path for a gas; it happens to be nearly tempera-
ture-independent for simple liquids.

In the present work, we will develop a correlated walk model with
the possibility of a trap and substantiate the formula (1.1) in a clear
manner. In addition, we will demonstrate special importance of the
dynamical correlation to account for the magnitude of the diffusion
coefficient.

2. Summary of Experimental Data

Naghizadeh and Rice [3] took measurements of self-diffusion coeffi-
cients in liquids Ar, Kr, and Xe. Their data and the corresponding-state-
principle analysis are represented in Fig. 1. The approximate temperature
range in which the measurements were taken is shown in Tab. 1.

Table 1

Temperature range (K)

Ar 85-108
Kr 100-160
Xe 160—-200

We see from Fig. 1 that the self-diffu.sion coefficients all fit the same
equation

InD*=dy —d,(T*)™}, @.1n
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where
d, =0.403, d, =2.65. 2.2)
Using Eqgs. (2.1) and (2.2), we can express the coefficient D in the fol-
lowing form
D = s(e/m)"'? exp(do) X exp(—d,/ksT) 2.3)
or

D = constant X exp(— €5/ksT), (2.4)

" where €, is a constant possessing the dimension of energy.
The potential parameters (s, €) and atomic weights for Ar, Kr, and
Xe are listed in Tab. 2.

Table 2
s(A) e/kg (K) Atomic weight
Ar 3.45 1198 " 39.944
Kr 3.70 166.1 83.80
Xe 4.03 229.8 131.30

Using these data and (2.3), we can represent the self-diffusion coeffi-
cients as follows:

D, =8.1X 1078 X exp(— 318K/T) m2s~!, (2.5a3)
D, =71X 1078 X exp(— 440K/T) m2s~!, (2.5b)
Dxe =173 X107 X exp(~ 609K/T) m?s™ . (2.5¢)

We note that the exponential factors are considerably smaller than
one in the actual experimental temperature range. We will come back to
this point later in Sect. 5.

3. The Correlated Walks on a Simple Cubic Lattice

The correlated walk model, which was introduced first by Goldstein
(11], is an extension of the more familiar random walk.model [12).
Recently, we have applied the former model to various physical problems
s, 131

The correlated walks in three dimensions may be set up as follows.
Let us consider a simple cubic lattice. A walker, by assumption, rpoves
on the lattice with the rule that he may proceed in the same direcfx'on as
that of the previous step with probability «, reverse with ;')robszxhty B,
turn at right angles with probability 7y or stay at the same site with prob-
ability o with the normalization condition
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atftdy+to=1, @3.1)

where the factor 4 is due to the fact that there are four orthogonal direc-
tions to any direction of the previous step. The stationary walker may
stay at the same site with probability ¢’ or restart in any of the six direc-
tions with probability u with the normalization condition

o' +6u=1. 3.2)

Note that the step probabilities are correlated in contradistinction to the
case of the random walks. The feature that the walker can stop, stay and
restart, makes it suitable for discussions of the migrating molecules in the
liquid. .

In an earlier work [5], we calculated the mean square displacement
for this model exactly (see ref. [5], Eq. (3.9)). By examining its asymp-
totic behavior for a long time, we can compute the diffusion coefficient
D for the model. The result is given by (ref. [5), Eq. (5.4))

D= —e— — —, @3.3)

where

§=a—§; 3.4)

and a and 7 represent respectively the lattice constant and the unit jump
time. This expression (3.3) was obtained after lengthy calculation with
the aid of generating function techniques [5). One can obtain the same
result (3.3) much more simply by Taylor-expanding the recurrence equa-
tions for the arrival probabilities. This method is briefly discussed in
the Appendix.

4. Simulation of the Molecular Motion

a) Lattice

Any molecule in a liquid moves in a continuous space. In our lattice
model, we approximate this motion by the motion of a particle on a
simple cubic lattice. We may choose the lattice constant a to be the
molecular size parameter s:

a=s. @.1)

For a simple liquid, the interparticle distance is approximately equal to
s. This unit a is much smaller than the distance in which the mass density,
the current density, etc., are measured. This allows us to define and dis-
cuss the diffusion in our lattice model.
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b) Unit Time and Step Probabilities

Let us imagine a liquid with one tagged (radio-activated) molecule
and follow the motion of this molecule. At any instant, the molecule
may be nearly stationary within the fluctuating cage generated by its
neighboring molecules or may be moving out of the cage and into a new
location. Let us choose a typical time 7 in which it travels the distance
a when it is in motion. Let us now perform the following gedanken-
experiment. We use a super-camera and take one picture per unit time 7
(with the exposure time 7). After taking 1000 shots, we look at our pic-
“tures and count how many times the molecule moved 2 distance of the
order a, how many times it moved forward, turned and reversed, how
many times it was at rest. The result of this examination will give us the
set of values for the step probabilities (o, B, Y, O, o', u). Note that the
step probabilities so determined depend on the choice of the unit time 7.
If the time 7 is too large, the molecule moves a distance far greater than
a. If it is too small, the molecule cannot move the distance a (within the
time 7). The practical choice of the unit time will be discussed in the
next section, where we analyze the experimental data.

5. Analysis and Discussions

Earlier in Sect. 3, we noted an expression for the self-diffusion coef-
ficient D as given in (3.3). Let us re-express it in the form -

11+6 1 a
I ——_ e B (5.1
b 61—81+o(1—o)"(r) _
As explained in Subsection 4a, we may assume that
a (lattice constant) = interparticle distance

= s (molecular size parameter). (5.2)

The ratio a/r, which represents the jump speed in the model, can be
identified as the microscopic migration speed v as explained in Subsec-
tion 4b

a/t (jump speed) =V (microscopic migration speed). (5.3)

Let us now look at the factor[1 to(1 — 0')"']"'. We expand n-oit
in a series, and obtain

1+o(1—a')"'=l+o+aa'+oo"+'°°. (5.4

We may now interpret those terms on the right-hand side as relative prob-
abilities in the following manner:

If the walker arrives at a site it must move out of it with zero, one,
two, ..., units (7) of time. The relative probabilities corresponding 10
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these events are represented by the terms on the right-hand side. We may
normalize the sum of these probabilities to unity. Then, the factor

1

S ———

1+0(1 —0)!
represents exactly the probability that the walker moves in and out
without stopping, that is, the probability of finding the molecule in the
state of migration. This number g can also be regarded as the ratio of the
number of migrating molecules to the number of stationary molecules.
To migrate the molecule must overcome the energy barrier €, generated
by the surrounding molecules. From the Boltzmann factor arguments,
this number g can then be represented by exp(— €p/kpT). Thus, we find
the equivalence

i

a (5.9)

1
= -
q 1 +o(1 —0")!

We can alternatively interpret the factor [1 +0o(1 — ¢')"'1"! as the
ratio of the travel time 7 in which the molecule migrates the distance @
with no stopping to the effective migration time 7 + fo with inclusion of
the “trap” time fo

~ exp(— €p/ksT)- (5.6)

_ 1 T
A= T30(0 —0) ' 7+l

s.7

Note that the trapping possibility effectively reduces the diffusion coef-
ficient D by the ratio q.

The molecule in motion after overcoming the energy barrier in general
should have a relatively large momentum compared with the molecule
trapped in the cage. The molecule in such an activated state may proceed
a few steps in the same direction rather than proceed in a zig-zag manner
or stop. Such correlation of successive steps will make the diffusion coef-
ficient greater than otherwise. This effect is represented by the factor
(1 +8)/(1 —8)in formula (5.1).

We are now ready to analyze the experimental data. For definiteness,
let us take the case of.argon, in which case the self-diffusion coefficient
D is given by (2.52).

First we look at the temperat'ure-dependent exponential factor. Using
(5.6) and comparing it with (2.5a), we obtain

Gb/kBETb=3‘8 K. s (5.8)
In the experimental temperature range (85-108 K), the exponential
factor

exp(— 318 K/T) ~

(5.9)
T+l
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is much smaller than unity. This indicates the reasonableness of our
interpretation that the factor exp(— €,/kpT) represents the fraction of
the number of migrating molecules over the total number. It also means
that the actual trap time 4 is much greater than the transit time without
stopping, 7. .

Second, we will examine the prefactor. From (4.1) or (5.2), we may
choose

a=s=3.54A. (5.10)

For the average migration speed a/r, we may take the thermal §peed
(3kgT'/M)"? with the temperature T’ corresponding to the midpoint of
- the temperature range in Fig. 1, T* = 0.80:

a/t = BkgT'/M)V? = (2.4¢/M)"'? =245 ms™". (5.11)
Substituting (5.8)—(5.10) into (5.1), we obtain

+ -
Dy, = 11—55 (1.40 X 1078) exp(— 318 K/T) m?*s™". (5.12)

Notice that this expression is fairly close to (2.5a). If we further choose

1+6

=538 (5.13)
1-6 58,

we then get a numerical agreement between (2.5a) and (5.12).
Solving Eq. (5.13), we obtain

§=a-£=0.71, (5.14)

which implies a large degree of correlation in the forward direction.
Alternatively, we may interpret this situation as follows. In the random
walk limit (8 = 0, o = 0), expression (5.1) for the diffusion coefficient is
reduced to

1 [a
Drandomwalk='g(';)a' (5.15)

Comparison with (5.1) indicates that the correlation of stegs lengthens
the unit step a by the factor (1 + §)/(1 — 8). In other words, if we define
the “effective” unit step-length (lattice constant) by
1+86
1-6
and assume random walks on the new lattice, we can get the same dif-

fusion coefficient except for the effect of the trapping represented by
[1+0(1 —0")7']7N

a=a¥*, (516)
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The value 5.8 obtained for (1 + 6)/(1 — &) depends on the choice of
the migration speed. A molecule which overcomes the energy barrier may
have a higher kinetic energy than the thermal energy and therefore may
move with a greater speed than that which we chose in (5.11). Consider-
ation of this effect may bring down the value 5.8 toward unity, say, by
a few tens of percentage.

In summary, we have the following picture for the diffusion. At a
given time, most particles are trapped within their molecular cages. The
ratio of the number of migrating molecules to the total number of mole-
cules is given by exp(- €p/kpgT). The few that move migrate only a
distance of the order of a few interparticle distances with cooperation of
the neighboring molecules. _

The present theory may be used to analyze the diffusion data for
various liquids. We have examined many data of the self-diffusion coef-
ficients for CH,, H,O, n-pentane, n-heptane, benzene, ethanol, sulfer
(2 phases), etc. [9]. All these liquids exhibit the exponential temperature
dependence indicative of a trap-and-go process in spite of the fact that
some of these molecules are far from spherical. We will report these
investigations in separate papers.

Tham and Gubbins [6] observed that the reduced thermal conductiv-
ity data for simple liquids fall on a single curve when plotted in reduced
units in accordance with the corresponding-state principle, but their
temperature dependence is quite different and far from the exponential
temperature dependence observed for the diffusion data. In fact the
thermal conductivity decreases as the temperature is raised. This some-
what unexpected temperature dependence may be understood if we
assume that the heat conduction of a liquid can be accounted for mainly
by transport of energy by phonons just as in the case of the heat conduc-
tivity in a solid. We plan to investigate this problem and report it in the
near future.

The viscosity of a liquid decreases almost exponentially as the tem-
perature is raised. This is an even harder problem to resolve. To find
central concepts associated with each of the different transport coeffi-
cients will be an important initial step toward the complete understand-
ing of the multi-faceted transport phenomena in liquids.

The level of description presented in the present work is semi-micro-
scopic. In fact, we have not attempted to determine the values of the
parameters (€,, 6) from the basic Hamiltonian of the system. Several
attempts at describing the diffusion in liquids from first principles have
been made [8]. Some of these were examined by Naghizadeh and Rice
[3] critically and in an enlightening manner. A complete microscopic

theory which may be compared with experiments is yet to be developed
in the future.
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Appendix
Derivation of Formula (3.3) for the Diffusion Coefficient

Let us first consider a one-dimensional correlated walk with the pos-
sibility of a trap. The unit step length and jump time are denoted by a
and 7. In this case, there is no possibility of the walker turning at 90°
(v = 0). The step probabilities, then, are normalized by

a+pt+ta=1, (A.1)
2uta =1. (A.2)

The probability that the walker arrives at the (discrete) site x = Na
at the (discrete) time ¢ = Nt with the right (left) step will be denoted by
Py(x, 1) (Py(x, 1)). The probability that the walker stays stationary at the
time t is denoted by Po(x, t). These probabilities of arrival, P;, with the
directions j =0, 1, or 2, satisfy the following recurrence relations

Pi(x,)=aPy(x —a,t —7)+PPy(x —a,t - 1)+ uPy(x —a, t — 1), (A.3)
Py(x,t) =BP(x +a,t — 1) taPy(x +a,t —7)+ yPo(x t+a,t —1), (A.4)
Po(x, 1) = 0Py(x,t —T) + oPy(x,t —T) + a'Py(x,t — 7). (A.5)
The sum

P(x, 1) = Py(x,1) + Py(x, ) + Po(x, 1) (A.6)

represents the probability that the walker finds himself at the site x at
the time £. In the limits in which the position is measured in infinitesimal

lengths a, and the time is measured in infinitesimal intervals 7, the proba-‘

bility distribution function p(x, f) defined by
p(x, t)a = the probability of finding the walker in
(x —4a, x + }a) at the time ¢
= P(x, t), (A7)

can be regarded as a continuous function of x and f, and this p(x, t) is
expected to obey the diffusion equation
ap(x, 1) a%p(x; 1)
=D 2 ,
ot ox
where the constant D represents the diffusion coefficient.

A way of deriving Eq. (A.8) and obtaining an expression for the
diffusion coefficient is as follows. Let us introduce

Pya(x, 1) = P(x, 1) + Py(x,1). (A9)

(A.8)

Using (A.1)—(A.4) and re-arranging terms, we obtain
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ulPo(x ta,t — 1) +Py(x —a,t —7)] +(1 — )P — a)Py(x,t —21)
+a[Py(x +a,t —7) T Pa(x —a,t — 1))

+(1 —0)(B —a)Pyy(x, t —27) — Pya(x, 1) = 0. (A.10)
From (A.3), we directly get
1
Pp(x,t —1)= p [Po(x, 1) — 0'Py(x,t —7)]. (A.11)

Introducing this expression in Eq. (A.10), we can get an equation for
P, alone:
Po(x,t +7) — o[ Po(x —a, 1) + Po(x +a,1)] —0'Po(x, 1)
+4[0'(1 +8) —a][Po(x —a,t — 7))+ Po(x +a,t —7)]
+(a+P)8Py(x,t —7)+8(0 —0")Po(x,t —27)=0;
(= -p). (A.12)
We now take the continuum limit, and introduce the distribution
function po(x, ) as indicated in (A.7). This function p, satisfies the same
equation as Eq. (A.12) for the probability P, (since this equation is linear).
We now expand Eq. (A.12) for p, with respect to small a and 7. Terms of
the lowest order and those of the order a vanish identically. First non-
trivial terms occur in the orders a? and 7, and they can be represented by

1 ' 3’po , _ ' 3po
51 -01+8) 55 a =(1+0-0Y1-8) —=7, (A1)

which can be converted into the form of the diffusion equation (A.8)

9 92
—apT"= ———a:," (A.14)
with
_11+8 1 -0 a (A15)
21-61+0—-0 7~ :

We see in (A.14) that the “staying” probability distribution function,
Po(x, 1), obeys the desired diffusion equation. In fact, the full and partial
probability distribution functions (p, p,, p,) all satisfy the same diffu-
sion equation in the continuum limit; these distribution functions are
different by constant factors, and are related as follows:

’

= —
pO(xv ) l+0—o'p(x’t)'

-0

x,1)= y1) = ——— - p(x, 1). A.l6
pi(x, 1) =pa(x, 1) 2(l+0_o)P(X ) ( )
These can be derived from the definition equation (A.6) and (A.11).
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The diffusion coefficient D for a three dimensional walk can be
obtained in a similar manner. The result is simply one third of expression
(A.15):

D=-—2>__—— (3 dimensions). (A.17)
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