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EFFECTS OF THREE-BODY INTERACTIONS ON THE STRUCTURE
OF CLUSTERS
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The structure of 54 and 147 atom clusters was studied using molecular dynamics at constant
temperature and incorporating three-body interactions to the usual pairwise additive potentials
among atoms. The effects of three-body interactions of the triple-dipole and exchange overlap type
on the aggregation of clusters are: (1) to diminish the coordination number resulting in a global
expansion of the clusters; (2} to increase internal disorder in such a way as to lower the
crystallization temperature: (3) to favor certain features characteristic of random close packing of
spheres at the expenses of destroying locally paired tetrahedra and octahedra, in the temperature
range 0.25 <7 <04,

1. Introduction

In the last decade, structural phenomena in small systems such as drops and
dense aggregates of atoms have deserved various degrees of attention. Two
kinds of computer simulation have been used in this direction, the atomistic
building up of clusters [1,2] and the Monte Carlo or molecular dynamics
methods [3]. The first group of works is based on various static criteria for
packing atomic clusters. The second group of works were focused on problems
such as: the local density of small systems [4-6]. vaporization [5]. the local
potential energy [7.8], the structure of a microcrystal in the process of a phase
transition [9]. the free energy and surface energy [9.10] dependence on the
number of atoms, the structure and interference functions [8.11] among others.

On the other hand, much effort i1s paid in the aggregation of molecules to
n-body effects. These contributions to the energy, although small. do play an
important role on the theoretical determination of the best molecular geometry
[12]. We are interested in this work to analyze the importance of three-body
interactions versus pairwise additive interactions in what concerns the structure
of atomic clusters.
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Our purpose is first to review some of the previous cooling experiments with
the use of molecular dynamics at constant temperature [13] for clusters of
atoms interacting via pair potentials. In addition we will incorporate to the
dynamics the non-pair-additive forces resulting from a model three-body
potential, V;, for every triplet of atoms in the cluster. At least partly because of
limited information in the literature, V; has frequently been approximated by
the triple-dipole energy of Axilrod, Teller {14] and Muto [15). However, more
extensive information on ¥, is available at present and models based on
Hartree—Fock [16] and dispersion energy results [14] have been constructed for
weakly bound trimers [17,18].

The organization of the paper is as follows. In section 2 we define the
cluster, describe the methods used, and discuss a phase transition for the
two-body system. In section 3, we give the results of adding the three-body
potential to the dynamics, present a novel approach to interpret the profile of
the radial distribution function g(r) and conclude with a brief discussion.

2. Model and methods

Let us define a cluster as that aggregate of N atoms held together by the
intermolecular forces themselves. The range of interaction between atoms has a
finite cutoff radius, r., mainly because of computational requirements. We
keep a configuration of atoms as permitted if the atoms on the cluster surface
are at distances from their nearest neighbors smaller than r.. Whenever the
energy of an atom is large enough to push it outside the cutoff, we stop the
simulation. This last condition restricts us to study clusters at low temperatures
and presumably only in the solid phase.

Let the coordinates of the N atoms be r, n...., ry and the cluster
Hamiltonian be

N N N
H(r"pY) =Y p}/2m+ Y Vi(r, )+ X Valr,rgrg). (1)
i=1 i<y i<j<k

where r,,=|r,—r| and r,, p, are conjugated variables.
The pair interaction V; is a truncated Lennard-Jones potential equal to zero
at a cutoff distance d,:

Vy(r)= l{ Ze { [(a/r)* —(a/r)] =[(o/ds)" —(a/ds)’] }. or<dy @)

otherwise.

The three-body potential V; is a function [16,17] that fits well the quantum-
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mechanical data for rare gases and beryllium atoms,
Vi(r, s 1) = {—A exp| —alr+s+ 1)) + Z/(rst)’z}(l + 3 cos 8, cos 8 cos 8,),
(3)

where r, s, t are the sides and 6., 8, §, the three angles of the triangle formed
by a triplet of atoms. The first term on the RHS stands for the exchange
overlap contribution of intensity A and range measured by a. This contribution
1s short range, and so it modifies the repulsion introduced by the pair
potential. The second term is a dispersion energy result [14] of intensity
obtained from third-order perturbation theory. For the calculations, the three-
body potential V, goes to zero at a cutoff distance 4. much in the same way as
V.

The density of the cluster is defined as p =N, /£, where N, denotes the
number of atoms contained in a sphere of radius R. =X, |r.—r, | /N, r,,
being the cluster center-of-mass radius vector and {2, is the volume of a sphere
with radius R_. This definition gives an idea of which is the density at the
cluster “core”. Atoms outside the core make up the cluster “surface”.

T= (mflz/c)l/z.

Andersen introduced the constant-temperature molecular dynamics and we
refer to his work [13] for details. The main ingredient for this dynamics is that
the time average of a mechanical state f(r~. P") of the system is equal to the
canonical ensemble average of that function. For computational purposes we
adopt reduced units: r* =r/a, p*=po’, T*=kyT/e, V¥ =V /e 1*=1/7,
7= (mo?/€)'/?. The equations of motion were solved using a time step of
0.017 in all cases, and the atoms were initially arranged as those in a sphere cut
from a well-equilibrated configuration of the bulk liquid phase at high temper-
atures [19). Typically, runs lasted 1207 for systems with bare two-body
interactions and between 30 and 607 when three-body interactions were
added.

We described now one computer experiment for the 147 cluster with only
two-body interactions among the atoms of the system. Brian and Burton [9]
reported a phase transition from solid to liquid in a 100 atom cluster at
T* =0.31 to 0.33. They detected the transition only when the cluster was
prepared by heating slowly from a lower energy. In order to locate such
transition, and in view of our constant-temperature dynamics, we proceed as
follows. First, let us start from an initial configuration chosen as explained at
the end of the previous paragraph. Secondly, let us cool at a very slow rate of
AT*/Ar* =83 X 10> 77! and sweep the region 0.25 < T* < 0.38. In fig. la
we plot the average potential energy per atom as a function of temperature.
The curve has definitely two slopes at 7* = 0.29-0.3, which is a somehow
lower temperature than Brian and Burton’s 7_. We can say that we are seeing a
diffusionless transition from an amorphous with ingredients of random close
packing phase [20] to a quasi-fce phase.
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Fig. 1. (a) Average potential energy per atom as a function of temperature for 147 atom cluster.
Typical error bars are shown. (b) Radial distribution function second peak for two different
temperatures: Full lines correspond to the bare two-body calculation and dashed lines are the
result when three-body interactions are added (Z*=0.15, a*=4.5, A*=2X 10%). The vertical
scales are different.

The above statement is based on an analysis of the radial distribution

function. In fig. 1b we show g(r) in the region of second-neighbor distances
for two temperatures, before and after the transition. The function’s first
maximun is at rf = 1.09. At 7* = 0.35, g(r) presents a splitted second peak at
r* = 3/2p% At T*=0.25, the radial distribution function has an extra and
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well-defined maximum at r = 2'/27*. This last peak is characteristic of the fcc
crystal, although the ratios between g(r) values at the maxima are not those of
a perfect crystal.

To study these discrepancies we propose a classification of the distances
composing g(r) in the following way [19]. Let us classify the second-neighbor
distances between atoms A and B as belonging to “geometrical arrangements”

va

O L L
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r/o

Fig. 2. (a) The five geometrical arrays with second-neighbor distrancese (dotted lines). Full lines
Join nearest-neighbor atoms. (b) Decomposition of the radial distribution function shown in fig. 1b
for the bare two-body 147 atom cluster. The lower curves indicate the contribution to the five
structures shown in fig. 2a: a=1(...). a=2(---). a=3( ). a=5(— — —) The array
a=4 gives a contribution not seen in the scale. {¢} Correlation coefficients as a function of
temperature. Full lines correspond to the two-body calculation and dotted lines are the result when
three-body interactions are added (Z*=0.15. a*=4.5. A4*=2x10%). A typical error bar is
shown.
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formed by A and B and by at most three common nearest neighbors. Only five
structures containing second-neighbor distances are obtained using this proce-
dure (fig. 2a): (1) half octahedra (HO); (2) double tetrahedra sharing one face
(DT); (3) double equilateral triangles with one common side (DET); (4) double
isosceles triangles sharing the unequal side; and (5) linear arrays of 3 atoms
with 2 nearest-neighbor distances. Interestingly enough, these five smallest
geometrical arrangements are the only structures into which all second-neigh-
bor distances can be distributed. Therefore, we can decompose the distances
into partial contributions to g(r):

s
g(r)=3 g.(r), 135<r*<23 (4)
a=1

as is pictured in fig. 2b, for T* = 0.25. At lower temperatures we have larger
occurrence of half and full octahedra at second-neighbor distances 2'/27f
which is an indication that an fcc quasicrystalline phase is favored. At 7* = 0.3
and higher temperatures, many more “twinned” tetrahedra (DT) are formed,
possibly indicating the presence of incomplete icosahedra or hexagonal close
packed regions. Thus, there is indication that a conformational transition is
taking place in this range of temperature.

3. The three-body effects

One important influence is that the ratio between the averages of the V; to
the ¥V, terms in the potential energy (V) /(¥,), is a function of the number of
atoms in the cluster, decreases with temperature, and is a negative quantity.
This fact makes it difficult to propose a criterion for scaling the three-body
effects into effective two-body parameters.

The first peak of the radial distribution function g(r) as a function of V;
parameters [19] is shifted towards larger distances when Z is increased. The
exchange overlap term 4 opposes this effect, although slightly. The overall
effect is an expansion of 1% in the nearest-neighbor distances between the
cluster atoms and consequently a reduction of 5-10% in the coordination
number (in the range 0.25 < T* < 0.42 and for finite number of atoms).

A more interesting effect of ¥, is how it affects the structure of the radial
distribution function in the range of the second-neighbor distances. In fig. 1b
we show the smoothing of g(r) maxima due to three-body effects when
compared to the calculation with bare two-body interactions. It is in this range
of distances where the outcome of favored triplets of atoms, other than
equilateral triangles, can be conveniently discussed in terms of the g_(r) from
€q. (4). Let us define a frequency of occurrence for each of the five geometrical
arrays of atoms of fig. 2a: v, =n_/n, where ny=%YXn_ and a=1to0 5. In fig.
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2a we have represented the », as functions of temperature. Changes in the
packing, as we can infer from this picture. are not drastic. However, between
T* =0.25 and T* = 0.3 the two-body system is suffering a structural change.
At lower temperatures, when the ratio of three- to two-body energies is larger,
we find that DTs (a = 2) are favored at the expenses of DETs (a = 3). When
temperature is raised in the system (7* > 0.3) the ratio three- to two-body
energies diminishes, and yet the a are almost constant except for an increase of
the linear arrays (a =5). A model of disorder 1s a random close packing of
spheres [20] where only »; and »; are present. Temperature enhances such
situation. Summarizing, three-body interactions produce disorder. as if an
extra source of temperature would be plugged to the cluster. As a function of
temperature, three-body interactions produce the destruction of all geometrical
structures with a tendency to favor more the linear (a =35) and the planar
(a = 4) arrays as well as triplets with sides larger than 2.3.

Another analysis can be performed to break g(r) into partial functions
associated to the core, surface, and intermediate regions in the cluster. Except
for the distances within the core being shorter then those in the core-surface
and in the surface regions, the distribution of geometrical arrays in the three
regions are very much like those previously discussed for the whole cluster. The
surface contains the largest proportion of arrays a = 4 and triplets with at least
two sides larger than 2.3.

A search for the mutual arrangement of DTs shows that pairs of DTs prefer
to share only one atom in clusters with and without three-body terms [19].
Clusters with bare two-body interactions have a significant increase of paired
DTs sharing 4 atoms (incomplete five-fold symmetry motifs) at 7% = 0.3. This
is not so for systems with three-body terms. We can interpret this effect by
saying that locally interconnected icosahedra are suffering a conformational
rearrangement at 7. only for the bare two-body systems.

We have demonstrated that for finite systems and when the exchange
overlap term is small, the effect of three-body interactions is to increase
slightly the nearest-neighbor distances and decrease the coordination number.
We have also shown that three-body interactions favor the less crystalline
packing and no temperature activated transition seems to appear (at least in
the range 0.25 < T* < 0.38). In the range of temperatures of this study. there is
little evidence of a large number of icosahedral motifs for the 147 cluster with
two- and three-body potentials. Finally, let us say that the analysis of the
radial distribution function second peak might be interesting for the study of
amorphous phases of metals and alloys. Further work is now in process to
search for effects of the non-pair-additive model on the cluster surface tension
[21] changes during a slow cooling or slow heating experiment.
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