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Structural effects of three-body
interactions on atomic clusters

Estela Blaisten-Barojas*

Department of Chemistry, Stanfond University
. Stanfond, Ca, 94305, USA

A study of the structure of 13,54 and 147 atom micro-
clusters was performed using molecular dynamics at constant
temperature. A special emphasis was given to the calcula-
tions of those quantities that could be sensitive to the
effect of adding 3-body interactions to the usual pairwise
additive potentials. Thus, a topologycal approach for
analyzing the radial distribution function second peak is
presented. The effects of 3-body interactions of the
triple-dipole and exchange overlap type on the aggregation
of microclusters are: 1) to diminish the coordination num-
ber resulting in a global expansion of the microclusters;
2) to increase internal desorder in such a way as to lower
the crystallization temperature; 3) in the temperature range
0.25 $ T* < 0.4, to favor certain features characteristic
ol random close packing of spheres at the expenses of des-
troying locally paired tetrahedra.

- I. INTRODUCTION

In the last decade, structural phenomena in small systems such
as drops and dense aggregates of atoms have deserved various degreég‘
of attention. We are interested in this work to analyze the importance
of three body interactions versus pair-wise additive interactions in what
concerns the structure of atomic microclusters. Experimentally it has
been difficult to obtain direct studies on isolated microsystems. In
addition, findings in condensed phase microclusters deposited on sub-
strates or trapped in matrices might not be good candidates for comparison
with available theoretical approaches because of the complexity of exper-
imental setups. ‘

In between theory and experiment are the computer simulations that
have proved to be fundamental in various research lines such as liquid
theory or nucleation phenomena. Two approaches have been used in this
direction, the atomistic building up of clusters(1,2) and the Monte Carlo
or molecular dynamics methods(3). The first group of works is based on
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72 BLAISTEN-BAROJAS

several criteria for packing atomic clusters. Generally in this atomistic
procedure one follows conventions with respect to minima of the potential
energy surface or of the spatial occupation. The second group uses two
powerful simulation techniques that were focused on atomic cluster problems
such as: the local density of small systems(4,5,6), vaporization(5), the
local potential energy(7,8), the structure of a microcrystal in the process
of a phase transition(9), the free energy and surface energy(9,10) depen-
dence on the number of atoms, the structure and interference functions(8,11)
among others. .

On the other hand much effort is paid in the aggregation of molecules
to n-body effects. These contributions to the energy, although small, do
play an important role on the theoretical determination of the best molec-
ular geometry.

It is our purpose to review some of the previous calculations with
the use of molecular dynamics at constant temperature(12) for clusters
of 13,54 and 147 atoms. In addition we will incorporate to the Newton
equations of motion the non pair-additive forces resulting from a 3-body |
potential V3 for every triplet of atoms in the cluster. At least partly
because of limited information in the literature, Vs has frequently been
approximated by the triple-dipole energy of Axilrod, Teller(13) and
Muto(14). However, more extensive information on V3 is available al
present and models based on Hartree-Fock (15) and dispersion energy re-
sults(13) have been constructed for weakly bound trimers(16,17). It is
our intention to incorporate into the molecular dynamics calculation one
of these models.

The organization of the paper is as follows. 1In section II we define
the clusters and discuss the methods used. 1In section III we present the
results of adding the 3-body potential to the dynamics. In particular we
discuss and analyze the structure of the 147 atom cluster as a function of
temperature. We present a novel approach to interpret the profile of the
radial distribution function g(r). 1In section IV we discuss a phase tran-

sition for the 2-body system and conclude with a brief discussion.
II. MODEL AND METHODS

Historically it has been difficult to give a unique definition of a
physical cluster and much work in this direction is due to Abraham, Lee
and Barker(3-5). Here we define a cluster as that aggregate of N
atoms held together only by the intermolecular forces themselves. The
range Qf interaction between atoms has a finite cutoff radius, L. mainly
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THREE-BODY INTERACTIONS 73

because of computational requirements. We keep a configuration as an
aggregate if the atoms are not further away than a distance d, from at
least one other atom in the cluster. Whenever the kinetic energy of an
atom is large enough to push it outside this cutoff, we stop the simula-
tion. This restrictive condition allows us to study clusters at low
temperatures and presumably only in the solid phase.

The cluster N atoms have coordinates ;1, ;2, cese ;N, such that the

potential energy is given by:

N . N
>N
V(r’) = z VZ(rij) + Z VJ(tij'tik' rjk) (1)
i<j i<j<k
and the Hamiltonian is
N
HEY, BY = § pi/2m + v(EY (2)
i=1

e -+ -+ -+ -
where rij = Iri - rjl and r;s Py, are conjugated variables

a2 b 2H (3)

= > ; = - °
ap;

i +
ari

The interaction between two atoms is calculated by using a truncated
Lennard-Jones potential which is zero at a cutoff distance 4,

v,(r) = 4el{(o/)12 - (0/0)8) - (to/ap'? - (0/a,)°%)}  1f rsq,
)
=0 otherwise

The three-body contribution to the potential energy is represented
by a model(16,17) that fits well the quantum mechanical data for noble gas
and beryllium atoms:@

VJ(r,S,t)=

(-2 exp[-a(r+s+t)] + 2/(rst)’}(1 + 3cos8 cosB cos8,) (5)
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where r, s, t, are the three sides and Or} G‘, Gt the three angles of the
triangle formed by a triplet of atoms. The first term on the RHS stands
for the exchange overlap contribution of intensity A and range measured
by a. This contribution is short range, and so it modifies the repulsion

introduced by the pair potential. The second term is a dispersion energy
result(13) of intensity(7) obtained from third order perturbation theory.

For the calculations, the three-body potential V3 goes to zero at a cutoff
distance d3 much in the same way as Vi.

The density of the cluster is defined as

p = —< ' ®)

with ; being the cluster center of mass radius vector and 0 is the
volume of a sphere with radius R.. This definition gives an idea of
which is the density at the cluster core. The atoms outside the core
make up the cluster surface.

Hans C Andersen introduced the constant temperature molecular
dynamics method and we refer to his work (12) for details. The main
ingredient for this dynamics 1is that the equations of motion of the N
particles in the volume Q2 are the Hamiltonian equations supplemented
by a stochastic collision term in the equation for 3 The trajectory
average F of a function F(r", p) 1s equal to an ensemble average. Here
we are concerned with the canonical ensemble (N Q T), so that the
average 1s for fixed volume Q:

F=F o, (N0T) = (NiQ(nam)]~! Jd;N de“ exp(-H(z", 8% 7k T)F (2Y, %)
Q (7)

where

Q(NaT) = (N:)“f d?“f ap" exp(-H(2Y, 8" /x,7) (8)
Q

and kB 1s Boltzmann's constant.
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For computational purposes we adopt reduced units: r* = r/o,
p* = pgd, T* = kBT/e, V* = V/e, t* = t/t with 1 = /moZ/e . The equations
of motion were solved using a time step of 0.01T in all cases and the
atoms were initially arranged as those in a sphere cut from a well
equilibrated 500 atoms configuration of the bulk liquid phase at high
temperatures. Other initial conditions were aléo considered and we
detected a certain reminiscence in the results on those initial config-
urations when they had a defined point symmetry. Typically runs lasted
120t for 2-body systems and between 30 to 60t when 3-body forces were
added.

III. THE THREE-BODY INTERACTION

The effects on the structure of the three body term in the potential
energy can be seen in several ways. When we analyze the first peak ot
the radial distribution g(r), we see that the effect of the dispersive
term is to shift the maximum towards larger distances. The exchange
overlap term opposes this effect, although slightly. The coordination
number n, is also modified by Vy. If ry is the maximum g(r), then

r, .
n, = J 4nrng(r)dr . (9)
0

For a 54 atom cluster we can see in Fig. 1 the variation of n, as a
function or A* and Z* for two different temperatures 0.35 and 0.42. The
exchange overlap contribution alone is quite sensitive to the temperature,
while combined with the dispersion term results in small charges of n,.
The overall effect of both terms is to shift the maximun of the g(r)
function from r* = 1.095 to 1.105 and to give a 5 to 10% smaller coordi-
nation number. The situation 18 about the same for the 147 atom cluster.
At T* = 0.35 there is a shift of g(r) first maximum form rg = 1.085 to
r3 = 1.095 and 'a change of n, from 2.65 to 2.5 for the V, parameters
A* = 2 x 104, Z* = 0.15. Summing up, in this range of variation of the
three-body intensities, the effect of these interactions is to increase
slightly the nearest neighbor distances between atoms in the cluster and
consecuently to reduce the coordination number in about 10% with respect
to values obtained with pairwise interactions alone. This effect is true
in the temperature range 0.25 £ T* 5 0.42 and for finite number of atoms.

A more interesting effect is pictured by the second peak of the
radial distribution function which presents a splitting. The ¢(r) second
peak for clusters is splitted(8,11) for a Lennard-Jones system. This
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76 BLAISTEN-BAROJAS

Figurt 1. Coordination number as a function of Z* for two temperatures
T* = 0:35‘(fu11‘lines) and T* = 6.&2 (dotted lines), and for two values
of A*,a) and b) plots . The arrows point to curves obtained by integrat-

ing Eq. (9) up to the r; values indicated in the figure.

splitting is affected by Vi, especially by the dispersivé term which
tends to smooth it as shown in Fig. 2. In an attempt to study what is
the cause of this smoothing of g(r) second peak, we propose a classifica-
tion of the distances composing this peak in the following way. Let us
classify the second neighbor distances between atoms A and B as belonging
to geometrical arrangements formed by A and B and by at most 3
common nearest neighbors. Only 5 structures containing second-neighbor
distances are obtained using this procedure (see Fig. 3): 1) half
_octahedra; 2) double tetrahedra sharing one face (DT); 3). double equi-
lateral triangles with one common side; 4) double isosceles triangles
sharing the unequal side, and 5) linear arrays of 3 atoms with 2 nearest-
neighbor distances.

Structures (1) and (2) involve five atoms while (3) and (4) are
formed by four atoms. Interestly enough, these five smallest atomic
arrays are the only structures into which all second neighbor distances
can be distributed (Fig. 3b). We can thus classify the distances into

Reuniones de Invieano



THREE-BODY INTERACTIONS 7

g (r)

Figure 2. Radial distribution function of a 54 atom cluster at T* = J.35.

partial contributions to g(r), each one picturing one type of geometrical

array of atoms
5

glr*) =] g, (™) 1.35 £ r* £ 2.3 (10)
a=1

In Fig. 4 we show an example of this pictorial decomposition of g(r)
for the range of distances corresponding to second-neighbors.

Once the three-body forces are plugged into the system, atoms tend
to rearrange with the eventual outcome of a system in which certain
favored triplet configurations are larger in number. This can be quanti-

fied by defining a frequency of ocurrence for each of the five geometrical
arrays of atoms ) -

vy =N, / n, (11)
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-

-Figure 3. (a) The five geometrical arrays with second-neighbor distances
(dotted lines). Full lines join nearest neighbov atoms; (b ) The decompo-
sition of second-neighbor distances in g(r). The array a=4 is very spread,

giving contributions up to distances r*® N~y 3r; .

N=147
T*025

r/o

Figure 4. Decomposition of the radial distribution function second peak.

The lower curves indicate the contribution of the five structures shown

in Fig. 3Ja: =i(...), =2(----), =3(—), =5(--=). The array a=4 gives a
contribution not seen in the scale.
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where n. = Epa and @ = 1 to 5. In Fig. 5 we have represented the v 's
as functions of temperature. Changes in the packing, as we can infer
from this picture are not drastic. There are though some effects of

the 3-body interactions. At lower temperatures, when the ratio of 3-body
to 2-body energies is larger, we find that tetrahedra shearing one face

(a

]

2) are favored at the expenses of double triangles shearing one side

(o 3). When temperature is rised in the system, the ratio 3- to 2-body
energies diminishes. But between T* = 0.25 and T* = 0.3 the 2-body system
is suffering a structural change. Even though the 3-body contributions

at these temperatures 1s small, it is enough to inhibit the structural
change enhanced by the 2-body interactions alone. This fact suggests a
possible criterion for scaling the 3-body effects into effective 2-body
parameters. Yet, we must keep in mind that the ratio 3-body to 2-body
potential energy per particle is a function of temperature and cluster

size.

04

-

Va

o2t 1

° 03 04

TEMPERATURE (€/ky)
Figure 5. Frequency of ocurreance of the five geometrical arrays as a
function of temperature. Full lines correspond to the 2-body calcula-

tion and dotted lines are the result when 3-body interacticns are added.

A typical error bar is shown.
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Concerned with the packing of these five fundamental geometrical
arrangements of atoms, and specially with the possibility of locating
motifs with five-fold symmetry, we searched for the mutual arrangement
of the double tetrahedra into pairs. Let us define correlations coef-
ficients C, in the following way. Consider one DT, and ask for the num-

ber of its atoms that are shared with any other DTj.

-1 "pT
c, = 2[ npp(npe = 1) ]. 1 (DT, with u atoms shared by DT,)

i<
(12)

=1, 2, 3, 4.

If u atoms are shared between DPl‘i and D’l.‘j , then DTj is accounted
only once {.e., into that C, with highest u. From Table I it is clear
that the highest correlation values are those of paired DT's sharing one
atom. Moreover 3-body effects are not producing dramatic breaking of
correlation among pairs of double tetrahedra. The presence of many
locally interconnected icosahedra, or polyicosahedral model(8,11), is
not confirmed. Another correlation of interest is a measure of the
twinning of half octahedra to give full octahedra:

No. of half octahedra forming full octahedra x 100 (13)
No. of half octahedra ’

Co =

This coefficient measures the ratio of cubic packing present in the
cluster, its values being cast in Table I as well. The effect of 3-body
interactions on C, is. to restrain tne formation of local f.c.c. motifs.

_The overall effect of 3-body interactions is therefore to produce
desorder, as 1f an extra source of temperature would be plugged to the
cluster. At T* = 0.25 they tend to enhance the formation of double
tetrahedra at the expences of other arrangements. At higher temperatures
they point towards a destruction of all structures with a tendency to
favor more planar (a = 4) and linear arrays (a = 5) as well as triplets
with sides larger than 2.30.

The analysis of g(r) second peak can be performed on the components
of g(r) when we break this function. into partial fugctions
associated to the core, surface and intermediate regions in the cluster
(see section II for definition). Except for the distances within the
core being shorter than those in the core-surface and in the surface
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reglons, the distribution of geometrical arrays as well as frequencies
and correlation coefficients in the three regions are very much like
those previously discussed for the whole cluster. The surface region
contains the largest propbrtion of arrays a = 4 and triplets with at
least two sides larger than 2.30.

IV. TWO-BODY CONFORMATIONAL TRANSITION AND DISCUSSION

Let us present here one other computer experiment for the 147
cluster with only 2-body interactions among the atoms of the system.
Brian and Burton(9) reported a phase transition from solid to liquid in
a 100 atom cluster at T* = 0.31 to 0.33. They detected the transition
only when the cluster was prepared by heating slowly form a lower
energy. )

From our 2-body data discussed in the previous section, Fig. 5 and
Table I, we can say that at T* = 0.3 there is a structural change. At
lower temperatures we have larger occurrance of half and full octahedra
at second neighbor distances /—Tr; which is an indication that a f.c.c.
quasi crystalline phase is favored. At T* = 0.3 and higher temperatures,
may more "twinned" tetrahedra are formed, possibly indicating the presence
of incompléte icosahedra or.hexagonal close packed regions. There is a
reasonable indication that a conformational transition is taking place
in this range of temperatures. In order to locate such transition, and
in view of our constant temperature dynamics we proceed as follows. First,
let us start from an initial configuration chosen as eiplained at the end
of section II. Secondly, let us cool at a very slow rate‘of AT* = 0.01
every 120t énd sweep the region 0.25 S e S 0.38.

The results are shown in Fig. 6 where we plot the average potential
energy per atom as a function of temperature. The curve has definitely
two slopes at T* = 0.29 - 0.30. The low temperature side of the transi-
tion corresponds again to a system crystallizing. The high temperature
side of the transition is a system too structuted to be a ligquid. 1In fact
the pair distribution function second peak presents the splitting that
we analyzed before in terms of the geometrical arrangements of atoms.

We can say that we are seeing a transition from an amorphous with ingre-
dients of random close packing phase to a quasi f.c.c. phase. We locate
the transition at a somehow lower temperature '1‘c than Brian and Burton.
According to them Tc should increase with increasing number of atoms in
the cluster. This suggests that possibly the transition is reversible
but there is a hysteresis loop. '
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Figure 6. Average potential energy per atom as a function of temperature.

Typical error bars are shown.

We have demonstrated that for finite systems when the exchange over-
lap term is small the effect of 3-body interéctions is to increase slight-
ly the nearest neighbor distances and decrease the coordination numbers.
We have also shown that 3-body interactions favor the less crystalline
packing and no temperature-activated transition seems to appear (at least
in the range 0.25 ‘< T* £ 0.38). In the range of temperatures of this
study, there is little evidence of a large number of icosahedral motifs
for the 147 cluster with 2- and 3-body potentials. Finally, let us say
that the analysis of the radial distribution function second peak might
be interesting for the study of amorphous phases of metals and alloys.
Further work is needed to search for effects of the non pair-additive
effects on pair potential other than the Lennard Jones, of how pairs of
different geoﬁetrical arrays pack together (crossed correlation coef-
ficients) and how the internal pressure changes during a slow cooling or

slow heating experiment.
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