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Summary

Exact expressions for the arrival probabilities with direction are obtained for correlated
walks on an infinite line. The probability distribution exhibits a diffusive maximum, similar
to that characteristic of random walks, and a runaway component which is associated with
free passage (no scattering). The arrival probabilities for correlated walks on a finite line
bounded by reflecting walls, are found to be expressed in terms of free-space probabilities.

In the usual random walks in one dimension [1], the walker is allowed
to move right or left with step probabilities given at random. In 1951,
Goldstein proposed and studied a correlated walk model in which the step
probabilities depend on the direction of the preceding step [2]. Gillis and
others obtained interesting results for the correlated walks in higher
dimensions [3]. Manning applied the model for the study of atomic
diffusion in crystals [4]. In our recent works, we reported the basic theory
[5], and applications of correlated walks to various physical phenomena
including the conformation of polymers [6], atomic diffusion in cubic
crystals with impurities [7], the simulation of the dynamics of a Lorentz
gas model [8].

In the present work we present exact expressions for the arrival
probabilities with direction for the correlated walks on an infinite line and
on a finite line bounded by reflecting walls.
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Let an object (walker) move in the same direction as that of the previous
step with probability « and in the opposite direction with probability f.
The step probabilities are normalized such that « + = 1. The probabili-
ties of the walker arriving at the position m (integer) with the right (R) and
left (L) step after N units of time will be denoted by Wpg(m, N) and
W,(m, N), respectively. Consideration of two successive steps yields the
following relations:

Wg(m,N) = aWg(m — I,N = 1) + W (m — 1,N — 1),
Wiim,N) = pWr(m + I,N — 1) + aW (m + 1, N — 1). )

We assume that the walker arrived at the position m, with the right step
initially (V¥ = 0). This condition can be represented by

WR(ms 0) = 5m.mna WL(n‘I’ 0) = 0 (2)

The solutions of Egs. (1) subject to (2) will be denoted by Wi(m, N;mg)
withj = R, L. After lengthy calculations involving the generating function
techniques [S], we obtain

Wi(m,N;my)
= w;(m — mg, N)

B {Pj[é(m —mg + N),N] if m —m, + N is even and non-negative,

0 otherwise,
(3)
where
x —-r—1 f—a\
e Y U [WEC=S
ON.0s <X<N X=0,

X N_ __1 —_ r
P X,N)= ) ( ; )(X)/foz’“’“<ﬁz~g), O0SX<N 4
r=0 r &

The probabilities of arrival from any direction, W, is the sum of { ;)
W(m, N;mo) = Wr(m, N;mg) + Wi(m, N;my). 5)

In Fig. 1 we show the probabilities w(x, N), (x = m — my), for different
values of the parameter o. The case of a = f = 0.5 corresponds to that of
random walks, where the distribution is symmetric about the starting
point m = mq. For the values of a close to unity there arises a diffusive
maximum and a runaway component which is associated with free passage
(no scattering). In between these two extremes, the diffusive maximum
becomes flattened as « grows from one half to unity. The appearance of
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Fig. 1. The arrival probability distribution w(x, N) for x = m — m,. m, = 0. N = 20. and

different a-values: (/) & = 0.5, (/]) « = 0.7 and (//]) x = 0.9. The case (I11), represented by

histograms, exhibits the runaway component at X = 20. Other cases are indicated by
continuous curves rather than histograms
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the runaway component is the most striking feature of correlated walks.
The runaway component may even be greater than the diffusive maxi-
mum. In such a case, the average behavior cannot be described in terms of
a few moments (x), (x?),..., which are often used to characterize
Gaussian-like distributions.

Let us now put two reflecting walls separated by a distance L and
located half way between lattice points, say at (1, L + 1). The motion of
the walker is then restricted to the domain (1,2, ..., L). The condition of a
reflecting wall dictates that every time the object arrives at the wall it will
be rebounded to the previous position with the direction reversed. The
exact solutions W*" for this case are obtained by the mirror methods [1],
and are given by

W eD(m, N ;mq)

= ) [Wi2kL + m,N;mg) + WuQkL — m,N:my)].  (6)
k=—u
where j* denotes the conjugate of j, that is, (1*,2*) = (2, 1). If we take
L — oo, we obtain the solution for a semi-infinite positive line, which is
given by the single term with & = 0 on the right-hand side.
The correlated walks may be subjected to various types of boundary
conditions. The periodic boundary, for instance, allows a simple solution :
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W®(m,Nimo) = Y WikL + m,N;my) @)
k=—ax

where L is the period. The probabilities of eventual absorption at the
absorbing walls, which limits the range of the correlated walks, were
calculated earlier [9]. But other important properties of correlated walks
with absorbing walls have not fully been explored. For example, the
eventual absorption at the wall for semi-bounded Bernoulli walks
critically depends on the value of the biased step probabilities. How this
striking feature will change with introduction of the directional cor-
relation is an important question.

As an application of the present work, we may discuss the evolution of
the probabilities with direction, W, for a bounded space. The approach to
the stationary state should depend on the step probabilities, the separation
length between walls, and the boundary type.

The models treated here, if suitably extended for higher dimensions, will
be useful for discussions of various phenomena including the sedimen-
tation of particles in solution, atomic diffusion in crystals, and the
diffusion of a Lorentz gas. Results of these and other studies however, will
be reported in separate publications.
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