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The helix-coil transition of polypeptides is treated on the basis of the correlated walk model which 
incorporates both the physical shape (helix or coil) and the hydrogen bonding. The statistical mechanical 
calculations reproduce the essential features of the classic theory established by Zimm and Bragg. Moreover, 
the nucleation parameter a, which represents the degree of difficulty for forming a first helical tum, is related 
to the probability y' of the model polymer making the correct tum: a = y,3. In the model in which the 
hydrogen bonding is attained only after three successive correct turns, the numerical value for the probability 
y' obtained after comparison with the optical rotation study of the poly-y-benzyl-l-glutamate by Doty and 
Yang is found to be 0.010. This value is compatible with the detailed molecular calculations by Scherag and 
his collaborators, but it is about one-sixth of the value which results from 'Y' = \!ii with 
a = 2 X 10-4 obtained in the truncated Z-B model. This difference arises from the more detailed 
representation of the phase-volume restriction for generating part of a helix and thus acquiring the hydrogen 
bonding in the present work. 

I. INTRODUCTION 

In the mid-fifties Doty and his associates and others, 1 

demonstrated experimentally that a single polypeptide in 
solution undergoes a helix-coil transition. Many im­
portant theories2• 3 fOllowed this faSCinating discovery. 
In 1959, Zimm and Bragg (Z -B) published a classic 
paper· on the helix-coil transition in terms of the solu­
tions of a modified ISing chain. This theory describes 
the qualitative features of the phase transition very well. 
In particular, the narrow temperature range usually 
observed for the transition is accounted for by the small­
ness of the nucleation parameter (J. In the Z-B model 
the hydrogen bonding states are accounted for directly 
but the associated physical shape (helix or coil) is only 
implied. Lifson and Roig5 introduced the internal ro­
tation angles (cp, lji) within each peptide unit, and cal­
culated the partition function. In a series of papers, 
Scheraga and his associates6 reported very extensive 
conformational analyses of polypeptides by using realistic 
potential functions for the internal rotations, arising 
from various sources including dipole-dipole interac­
tions between amide groups and hydrogen bonding. 

Recently we proposed a theory of the conformation of 
a simple polymer based on the correlated walk model. 7 

Extending this model with inclusion of the hydrogen 
bonding, we propose a new model of a polymer (poly­
peptide) capable of helix-coil transition. This gen­
eralized model contains the Z -B model as a special case 
if we look only at the hydrogen bonding states of Q!-
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amino acid residue -NH-CHR-CO- but it incorporates 
the physical shape as well. 

The solution of the model appropriate in the vicinity 
of the helix-co~l tranSition is obtained in terms of the 
solutions of modified linear Ising model. The main 
features of our results are as follows: 

(a) General results are qualitatively similar to those 
of the Z -B theory. 

(b) The nucleation parameter (J can simply be re­
lated to the turn probability y, which represehts the 
bending property ariSing from the internal rotation with­
in the residues: (1= y' 3. 

(c) The y' obtained after comparison with the optical 
rotation study of the poly -y-benzyl- L -by Doty and 
Yang,l has the numerical value 0.010. This value is 
compatible with the detailed molecular Calculations by 
Scheraga and his collaborators,6 but it is about one­
sixth of the value which results from y' '" 3,[ (J with 
(1; 2 x 10-4 obtained in the truncated Z -B model. 4 

In Sec. II a model of a polymer capable of helix-
coil tranSition is presented. This model is reduced 
further in Sec. III, and the solution of the reduced model 
is obtained and discussed. In Sec. IVa refined treat­
ment of the helix-coil transition is given in terms of the 
solutions of the Ising chain with up-to-third nearest­
neighbor interactions. Section V concludes with dis­
cussions and remarks. 

II. THE MODEL 

Let us consider a polypeptide, H-(NH-CHR-CO)n-OH, 
where n is the number of amino acid residues. Let us 
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choose each residue as unit segment. From the nature 
of the residues, any neighboring segments may be bent 
at right angles but may not be pointed in antiparallel 
directions. The global conformation of the polymer in 
solution will now be represented by a model polymer 
stretched over on a simple cubic lattice with the fol­
lowing rules: A segment follows the direction of the 
preceding segment with probability a or turns at right 
angles (four possibilities) with probability y but does 
not reverse. The probabilities are normalized such 
that a +4y = 1. The lattice constant ao will be chosen 
to equal the average linear size of the unit amide resi­
due. 

In a coil state, the average configuration of the poly­
mer will be characterized in terms of the parameters 
(a, y) and ao' In particular, the mean square end-to­
end distance for the model polymer was calculated in 
Ref. 7, and is given by 

(R2) 1 + a 2 (1 _ an) 
-::r-=--n- 2 

ao 1 - a (1 - a) 

This expression has the following limit behavior: 

(R2) -tna~, for a =y=t , 

and 

(2.1) 

(2.2) 

(2.3) 

The case in which a = y corresponds to the state of ran­
dom coil. The result (2.2) for this case is in agree­
ment with the result on the basis of the restricted ran­
dom walks with prohibition of the immediate reversal. 
In the other extreme case in which a =1, the model 
polymer stretches out like a solid bar, which yields 
Eq. (2.3). 

The expression (2.1) was derived with no self­
avoiding restrictions except for the immediate reversal. 
In particular, closed loops such as the loop with four 
successive segments as shown in Fig. l(b) are allowed 
in the statistical average. The averaging done in this 
manner should correspond to the reality better7; it 
should represent a result more reasonable than the 
result which would be obtained with prohibition of any 
and all closed loops as prescribed in the self-avoiding 
walk models. 

Let us now consider a helical state of the polypeptide. 
In the Pauling-Corey alpha-helix structure, 9 each amide 
(CONH) is hydrogen-bonded to the carbonyl oxygen of the 
third following amide group, and approximately four 
residues make up a helix unit. See Fig. 1 (a). Such a 
helix by construction is represented by the closed 
square formed by four segments as shown in Fig. 1 (b). 
We will postulate that the hydrogen bonding is attained 
only when a segment completes a new square with the 
preceding three segments. Thus for example, in Fig. 
1, the fifth to eighth segments attain the bonding. 

If the hydrogen-bonding state of the model polymer in 
Fig. 1 is looked at from one end, it will be represented 
by the sequence 000011110 ••. , where the digit 1 repre­
sents a bonded segment and the digit 0 an unbonded seg­
ment. In general, the first three segments are always 
unbounded and no sequence of less than three 0' s should 

-------....---
to} (b) 

FIG. 1. A polymer backbone forming helices (a) is represented 
by a model polymer stretched over on the orthogonal lattice 
(b). By assumption, the hydrogen bonding is attained when a 
segment completes a new square with the preceding three seg­
ments. 

appear by construction. This is in complete agreement 
with the original Z-B model. 

In our model, the complete helical state (ground state) 
corresponds to the polymer being wound around a 
single square repeatedly. This representation neglects 
the obvious three-dimensional form of the polypeptide, 
and therefore is far from the reality. The representa­
tion however, should be reasonable in the region of 
helix-coil transition where the main emphasis of our 
study is directed. 

III. THE HELIX-COIL TRANSITION-THE 
SIMPLIFIED MODEL 

Our model clearly contains two extreme states: 
random coil and helical states. Let us now look at the 
transition between the two. The analysis of the original 
model is far too complicated as it stands. We will now 
reduce it to a manageable model. 

Let us take a mOdel polymer with several repeated 
squares representing helical loops. We divide it in units 
of three segments. Each unit together with the last seg­
ment of its preceding unit mayor may not form a square. 
The state of jth unit will be represented by 

\ 1, for closed square (loop) , 
/J.j='! (3.1) 

~ - 1, for open figure . 

The statistical weight of a given state {/J.J} of the chain 
of units is now assumed to be the product of the follow­
ing factors: 

(1) the loop (square) formation factor p if jJ.j =1, 

(2) the factor q=l-p, if /J.j=-1, 

(3) the Boltzmann factor exp(j3K) if a loop follows 
another loop and unity otherwise; the energy K repre­
sents the bond energy between the Uliits. 

The loop formation factor p is prescribed to account 
for the fact that the segments in the unit proceed in a 
well-defined orientation to close a square. This factor 
therefore may be chosen as 

p=(y/4)3 , 

since only one of the four pOSSible turns is correct 
to generate a square. 

(3.2) 

The total bond energy can be expressed by the Hamil­
tonian 

H = -K Lf(jJ.j-l, jJ.j}' 
j 

(3.3) 
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where 

if J.ll = J.l2 = 1 , 

otherwise. 
(3.4) 

The above assumption about the statistical factors 
represents a very crude approximation. In particular, 
a partially formed square followed by a complete closed 
square can get no benefit of bonding in this simpllfied 
model. A theory improved upon this point will be 
presented in the following section. 

The partition function Z for the Simplified model can 
be obtained simply, using the standard languages3 for 
the linear Ising chain with nearest neighbor interaction. 
The transfer matrix T is given bylO 

T = (q q8K)' P pe 

If we introduce 

f=p/q; s=te8K , 

the matrix T can be written as 

T·q C :)= qf. 

The largest root of the characteristic equation 

1"-AI=o 
is given by 

Ao"'Hl +s +[(1-S)2 +4t)1/2} • 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

We note that s = t exp(,BK) represents the ratio of the 
helix contribution to the partition function to the coil 
contribution. 

In the limit of large n, the free energy l/! per unit is 
given by 

(3.10) 

The average degree of helicity, that is, the ratio of 
the number of helical loops to the total number of units, 
is 

< )=~ =.!. Ao-1 
f a(,BK) AO 2Ao -s-1 

(3.11) 

This quantity against s for selected values of t is shown 
in Fig. 2. 

For smaller values of the loop formation factor p (or 
t), the transition, which occurs around s = 1, becomes 
more and more abrupt. A reasonable fit with the ex­
perimental observations of Doty and Yang on poly-y­
benzyl-L -glutamate, 1 which are indicated by dots, can 
be obtained for t '" 2 X 10-4• 

The r€sults obtained have great similarities to those 
explicitly worked out by Zimm and Bragg. In fact, the 
transfer matrix in this theory4 is 

T'_B'( ~ :) . (3.12) 

., 
~ 
0> ., 
"0 

1.0.---..---,---==_-..., 

>. 0.5 
u ., 
.c 

0.0 b.,.,~IL-----1_--'-_--'-_-1 
-200 0° 20° T-Tc 

FIG. 2. Theoretical curves of the helicity degree calculated 
from (3.11) for two t values: the solid line for t = 2 X 10-4 and 
the broken line for t = 1 X 10-4• The Circles represent experi­
mental data of optical rotation of polY-'Y-benzul- L-glutamate 
observed by Doty and Yang.! 

If the nucleation factor as is replaced by the factor t, 
the matrix T Z-B is identical to our matrix T within the 
overall multiplicative factor q. (This last factor q does 
not affect the physical results.) While s and a were the 
parameters in the Z-B theory, s and t are in the pres­
ent theory. In spite of this difference it is found that 
the two theories give mutually indistinguishable results 
for the average degree of helicity when both t = p/q and 
a take the same values, 10-2 or less. This means that 
the parameter p, just as the nucleation parameter a, 
characterizes the difficulty of forming an initial loop. 
Since our model contains the physical shape (helix or 
coil) explicitly a clearer picture of the nucleation em­
erges. The nucleation factor p is related to the turn 
factor yas in (3.2). We will further discuss this point 
in the following sections. 

IV. REFINED TREATMENT OF THE HElIX­
COIL TRANSITION 

Scheraga and his associates demonstrated, on the 
basis of molecular calculations in terms of the potential 
between the bond-bond (Ca - C' , N - cal angles within 
an amide group, that each amide residue should follow 
the next in a well-defined manner in order to form a 
helical conformation. 6 Such fine feature was partially 
lost in our crude model described in the last section. 
In this section we present a refined model for the helix­
coil transition. For this purpose, we take each seg­
ment representing a single amide residue as one unit, 
and will postulate the following rules: 

(1) If a segment follows the preceding segment in the 
correct direction, the statistical factor p' is given; 
otherwise the factor q' = 1 - p' is assigned. 

(2) The Boltzmann factor exp(f3K') is given if a seg­
ment makes a third correct turn following the two cor­
rect turns; otherwise unity is assigned. 

The statistical factor p I represents the probability 
that the amide residue takes a suitable conformation for 
a right-hand or left-hand helix. This factor will be 
small compared with unity because the unsuitable con-
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formation corresponds to much greater phase-space 
volume. The factors p' or q', can be related to the 
bond-bond angles within the amide residue, and this 
connection will further be discussed in the following 
section. A succession of three correct turns clearly 
generates a closed square. Therefore, the rule (2) for 
the attainment of the hydrogen bonding has the same 
content as the original postulate laid out in Sec. II. 

In the vicinity of helix-coil transition, the tendency 
of forming helices to gain the bonding competes head-on 
against the accompanying decrease in the conformational 
entropy. The contribution of the conformational entropy 
to the partition function is given in terms of the prob­
abilities (p', q ') and that of the hydrogen bonding in 
terms of the Boltzmann factor eBK '. The factor p' ob­
viously is connected with the turn probability. y in the 
model introduced in Sec. III. But they are distinct from 
each other. First, the factor p' is defined with the 
restriction that the successive segments should con­
form in such a way to generate part of a helix. Be­
cause of this restriction, the factor p' in general will 
be smaller than the probability which is free from such 
restriction. Secondly, the factors p , and q' represent 
the polymer conformation only partially. In fact, a 
given sequence of p' and q', does not generate the over­
all conformation of the model polymer except for ex­
treme cases of complete helix and random coil. As far 
as the general feature of the helix-coil transition is 
concerned, the above two rules should describe the 
states of the model polymer in a semiquantitative man­
ner. 

The partition function for the model polymer may be 

p' 0 

0 0 P' 
0 0 0 

0 0 0 

T= q' p' 0 

0 0 p'eBK' 

0 0 0 

0 0 0 

The characteristic equation 

0= I T -I\. I = 1\.2 D1 D2 , 

where 

0 0 0 

q' 0 0 

0 q' p'rI'K' 

0 0 0 

0 0 0 

q' 0 0 

0 q' p' 

0 0 0 

D1 = 1\.3 + (s' - 1) 1\.2 - (s ' - t ') I\. + t ' (s ' - t ') , 

Dz = 1\.3 - (1 + s ') 1\.2 + (s ' - t')II. + t ' (s' - t') , 

s'=l'exp(/3K') , t'=p'/q', 

0 0 

0 0 

0 0 

p' q' 

0 0 

0 0 

0 0 

p' q' 

(4.4) 

(4. '5) 

(4.6) 

has all real roots. The maximum root is found to come 
from 

Dz(l\.) =0, (4.7) 

calculated by use of the Ising languages as follows. 
We assign + 1 or - 1 to the state (p) of each segment. 
The statistical weight of a state (p), of the chain of n 
segments is given by the product of the following fac­
tors: 

(1) the turn factor p', if J1.j = - J1.i-1 , 

(2) the factor q' == 1 - p', if J1.j = J1.H' and 

(3) the Boltzmann factor exp(J3K'), if J1.j = - J1.J-1 
= J1.j_Z = - J1.H' and unity otherwise; the energy K' re­
presents the bond energy between the jth and (j - 3)th 
segments. 

The total bond energy may be expressed by the Hamil­
tonian 

where 

if J1.1 = - J1.z = J1.3 = - J1.4 , 

otherwise. 

(4.1) 

(4.2) 

We note that this Hamiltonian corresponds to that of the 
Ising chain with first to third nearest neighbor inter­
actions. 

The partition function for this model can be obtained 
simply, using the correlated-walk-Ising languages. 10 ,H 

The transfer matrix T is given by 

, ~ 
=q T. 

and is given by 

1\.0 = 2 (_a/3)1/2 cos (q,/3) - P/3 , 

where 

a==Q-jp2, q,==cos-1[_b/2(_as/27)1/Z], 

b == (2p 3 - 9PQ +27R)/27 , 

P == - 1 - S I, Q == s' - t ' , R == t' (s ' - t ') • 

(4.3) 

(4.8) 

(4.8) 

(4.9) 

(4.10) 

The quantities s' and t ' defined in (4.6) refer to the 
segment rather than the unit of three segments. Except 
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FIG. 3. The average helicity degree (f) calculated from 
(4.12) with t' = O. 010, shown in solid line, is in good agree­
ment with experimental data by Doty and Yang. 1 The broken 
lines correspond to the calculations from the partition func­
tion Zn in (A3) with n= 20 and 60, and t'=O. 010. 

for this, they may be interpreted in the same manner 
as sand f defined in the last section. 

The partition function Zn for a model polymer of n 
segments can be obtained in terms of the roots of Eq. 
(4.4), and is given in the Appendix. In the limit of 
large n, the free energy per segment, l/J, is given by 

The average degree of helicity is given by 

<) a ln :\0 
f = a(j3K') 

(4.11) 

(4. 12) 

This quantity as a function of s' is plotted in Fig. 3, 
where a good fit with the same experimental data of 
Doty and Yang, 1 is obtained for f' =0.010. 

V. DISCUSSIONS 

In the last two sections we have seen that both ap­
proximate models yield good fits with the same experi­
mental data. The values used for the "nucleation" pa­
rameters are t=2x10-4 and t' =0.010. If we apply (3.2) 
to the former, we obtain 

(5.1) 

for the correct-turn probability. On the other hand, f'r:: pi 
in the second model can be identified with the probability for 
the" correct" turn. We have, therefore, 

1" r:: f' =0.010, (5.2) 

which is considerably smaller than 0.059. This 
means that first, the qualitative behavior of the de­
gree of helicity can be fit without tight control as long 
as two primary parameters characterizing the bonding 
and nucleation are introduced. We note that this general 

feature has been observed in most of the previous the-
0ries dealing with the helix-coil transition. 3-5 Secondly, 
the way of representing the phase-volume restriction 
for generating part of a helix and thus acquiring the hy­
drogen bonding, affects the value of the probability 
significantly. In our seond and more refined model, 
this restriction is represented in terms of the first to 
third nearest-neighbor interactions, see Eqs. (4.0 and (4.2). 

The obtained value y r::t' r=0.010 is quite consistent 
with the molecular calculations of Scheraga et al. In 
their analysis, equipotential contours in the rotation 
angle pair plane (l/J, cp) were calculated by using semi­
empirical potential functions ariSing from various 
sources including the hydrogen bonding between back­
bone NH and Co groups. The fraction of the area en­
closed by the contour at some appropriate thermal en­
ergy corresponding to a helical conformation against 
the total area (21T) x (27T) in the (l/J, cp) plane, may roughly 
be regarded as the fraction of the favorable phase­
space volume. For almost all cases, the contour cal­
culated for a variety of polymers extends over several 
degrees in both l/J and cf>, and the area within makes up 
about 1% of the total area. This is in agreement with 
the obtained value y =0.010 for the correct turn, but 
far from the value t I' = 0.059 obtained by use of the sim­
plified model. 

The average degree of helicity should actually depend 
on the molecular weight. For relatively small number 
of the amide reSidues, the partition function Zn should 
characterize the thermodynamic behavior. The parti­
tion function for the second model Zn is given by (A3) in 
the Appendix. The average helicity degree calculated 
from Zn(s, t, n) for n =20, 60, and 00, are shown in 
Fig. 3. For smaller n, the transition near s ' = 1 is 
milder, which is a general feature of the phase tran­
sition. 

It is known that a purely one-dimensional system 
cannot undergo a sharp phase transition. 12 In our 
simplified model, the smallness of the loop formation 
factor p generates a smooth but sharp transition be­
tween helix and coil. This factor p was expressed in 
terms of the correct-turn probability 1" as P = (1'/4)3 =1"3. 

If a hypothetical loop contained a large number k of seg­
ments, P =1". would have followed. Since 1" is consider­
ably smaller than unity, the factor p would rapidly ap­
proach zero for a large k. In the limit of large k and 
large n, we would have had an extremely sharp transi­
tion. There is no contradiction, however. The hypo­
thetical system can be represented by a Hamiltonian of 
some ISing chain with up to (ft -l)th nearest-neighbor 
interaction like Eq. (4.1). With the large k limit, the 
system corresponds to an Ising chain with infinite 
range of interaction, which is known to undergo an in­
finitely sharp phase tranSition (in the thermodynamic 
limit). 13 

The models and calculations presented here may be 
applied With a slight modification to the DNA. Since the 
bases forming the unit of the double helix are bigger 
and more numerous, the loop formation factor p = 1". 
with a large k, will be very much smaller. This yields 
a more abrupt phase transition around s = 1, which is 
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in agreement with the experimental observation; the 
melting curves for DNA show a transition within a few 
degrees in temperature while the corresponding tem­
perature range for the Cl! helix typically extends five de­
grees or more. 14 Since the nucleation parameter a- p 
should roughly be regarded independent of temperature 
and base species, the melting temperature Tm , deter­
mined from 

so:=pexp(-K/kBTm)o:=l, (5.3) 

should be proportional to the bond energy per unit double 
helix, K: 

(5.4) 

The average bond energy can be varied in a controlled 
manner with the content of G-C base pairs. If the usual 
linear relationship is assumed here, then the melting 
temperature T m should vary linearly with the content of 
G-C base pairs. 

This feature also is in good agreement with experi­
mental data. 14 
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APPENDIX: THE PARTITION FUNCTION Zn 

The characteristic Eq. (4.4) has the following roots: 

AJ=2(-a/3)1/2cos (~+2; j) -f 
Ak o:=2(-a1/3)l/Zcos (1/l

3
l +2;k)_~l , 

k =3, 4, 5, 

where 

j=O,1,2, 

(Al) 

al=Ql-t~, bl =(2P¥-9PlQl+27Rl)/27 , 

I/ll =cos·
l 

( - 2(-li27)1!2 ) 

Pl=-l+s', Ql=t'-s', R 1""t'(s"-t'). (A2) 

In terms of these roots, the partition function Zn is 
given by 

-lnZn=lnq' +In>to + - In ~ Ap ~ 1 1 [5 ()n 
n n p=l AO 

x (><! + Cl!4 A! + Cl!3 >.; + Cl!z >.; + 0/1 Ap + 0/0)] , (A3) 

where 

(A4) 

ao =t' (t' -1)(5' - t ')2, at = (5,2 _t,2) , 

a2=(1-t')(t'-s'), a3=3t'-2t'2_2+s', 

Cl!4= 1 - S,2 • (A5) 
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