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The dynamics of a Lorentz-gas molecule is simulated in terms of correlated walks on cubic lattices. For a 
finite lattice with reflecting boundary. the ergodicity is established so that the probability distribution in 
position and direction approaches a stationary state which is homogeneous (site-independent) and isotropic 
(direction-independent). Exact expressions for probability distribution in direction are obtained for simple, 
body-centered, and face-centered cubic lattices. They approach equilibrium exponentially with a different 
number of relaxation times depending on the lattice. The directional probabilities for a single-site lattice with 
reflecting boundary approach equilibrium in an oscillatory manner. The Boltzmann H-function for this 
system, however, shows a monotonic behavior, and coincides with the H-function for the same system with 
periodic boundary. The parameters in the model, step length and unit time, can be eliminated in the kinetic 
theoretical limit. In this limit, the diffusion coefficient calculated for the lattice reproduces the result by 
means of the Boltzmann equation within the restriction imposed on the directions of the movement. 

I. INTRODUCTION 

In the conventional random walks in one dimension, 1 

the walker is allowed to move right or left on a line with 
the probabilities of steps given at random. In 1951 
Goldstein proposed and studied a correlated walk model 
in which the step probabilities depend on the direction of 
the previous step.2 Gillis and others obtained several 
interesting results on the correlated walks in n dimen­
sions. 3 Manning applied the model for the study of 
atomic diffusion in crystals. 4 These works appear to 
have been buried in a huge amount of literature directed 
toward the random walkS, proper and with self-aVOiding 
restriction. 4.5 In our recent works, we have reported 
applications of correlated walks to various physical 
phenomena, including the conformation of polymers, 6 

atomic diffusion in cubic crystals with impurities, 7 and 
the phase transition in Ising systems. 8 

In the present paper we establish a close connection 
between correlated walks and the Lorentz gas model. 
The following results are obtained. 

(a) The correlated walks on a cubic lattice simulate 
the dynamics of a Lorentz gas molecule in a substantial 
manner. Only the directions of the movement are re­
stricted to the nearest-neighbor directions associated 
with the chosen lattice. 

(b) The diffusion coefficient obtained from the exact 
expression (3.6) for the mean square displacement, 
reproduces the result by means of the Boltzmann equa­
tion (2.2) within the aforementioned restriction on the 
directions. In particular, the diffusion coefficient is 
given in terms of the diffusion-relaxation rate r 1 , which 

alWork supported in part by the Programa Nacional de Ciencias 
Basicas (CONACYT. Mexico) under project PNCB-0024. 

blpresent address: Department of Physics and Astronomy. 
State University of New York at Buffalo, Amherst, New York 
14260. 

c1present address: Department of Chemistry, McGill Univers­
ity, Montreal, PQ •• Canada H3A 2K6. 

incorporates the loss and gain processes with the well­
known factor (1- cosO), where 0 is the scattering angle. 

(c) The ergodic property of the Lorentz-gas-correlated-' 
walk model is established for ajinite lattice with reflect­
ing boundary. At whatever lattice site and in whatever 
direction the particle (correlated walker) may start 
initially, the probability distribution approaches a 
stationary state that is "homogeneous" (site-independent) 
and "isotropic" (direction-independent) [see Eq. (5.1)]. 

(d) The approach to equilibrium of a "homogeneous" 
system is studied by calculating explicitly the prob­
ability distributions in direction, (4.8), (6.10), and 
(6. 17), respectively, for simple cubic (sc), body­
centered cubic (bcc), and face-centered cubic (fcc) 
lattices. The approach is of the exponential-decay type 
with a different number of relaxation times. All relaxa­
tion times approach the same value if the interaction is 
hard-sphere-like, so that the differential cross section 
should become isotropic. 

(e) The approach to equilibrium as a whole may be 
studied in terms of the Boltzmann H-function [Eq. 
(4.12)]. This function calculated explicitly as a function 
of time shows a monotonic decrease to a stationary 
value. 

(f) The probabilities in direction [Eq. (5.3)] for a 
single-site lattice with reflecting boundary show oscilla­
tory approach to equilibrium. The H -function for this 
system however shows a monotonic behavior and happens 
to have the same H-function as that for the single-site 
lattice with periodic boundary. In spite of the difference 
in boundary, the probabilities for both cases are char­
acterized by the same relaxation times. 

Features (c)-(f) should also hold for the solutions of 
the Boltzmann equation with analogous initial and bound­
ary conditions. It is Significant that exact results are 
obtained for the lattice model of the Lorentz gas (the 
present model) while the Boltzmann equation for the 
same gas is more difficult to solve. 
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In Sec. II we set up a correlated walk model on the 
sc lattice appropriate for the Lorentz gas. From the 
exact expression (3.6) for the mean square displace­
ment' the diffusion coefficient is calculated in Sec. III. 
In the kinetic theoretical limit, Eqs. (3.14) and (3.15), 
in which the unit time T and the step length ao in the 
model are eliminated while the speed and the mean free 
path of the Lorentz-gas particle are kept constant, the 
diffusion coefficient essentially reproduces the result 
by means of the Boltzmann equation. In Sec. IV, we 
study the approach to equilibrium of a homogeneous sys­
tem by calculating the distribution functions in direction. 
Correlated walks on a finite lattice with reflecting bound­
ary are discussed in Sec. V. In Sec. VI, correlated 
walks on bcc and fcc lattices are set up and discussed. 
A brief summary is given in Sec. VII. 

II. LORENTZ GAS AND CORRELATED WALKS 

In the so-called Lorentz gas model, particles move 
independently of each other in a potential field of fixed 
scatterers. The Hamiltonian H of the system is given 
by 

N 2 N N I 

H= ~ -!;; + f; ~ v(rj-R,,) , (2.1) 

where R1 , R2, ••• , RN I are the positions of N I scatterers. 

In the calculation of thermodynamic properties of the 
particles, it is assumed that the positions of scatterers 
{R,,} are distributed at random and characterized by the 
average density n I=- N 1/ n alone. 

If this density nI is low and the potential v has a short 
range, any given particle will be scattered elastically 
by one scatterer at a time. In this case, the following 
Boltzmann equation should hold9 : 

af(r, v, t) +v. af ='2rrnrv C' desinIH(v, B) 
at ar Jo 

x[f(r, v', t)-!(r, v, t)], (2.2) 

where l(v, B) represents the differential scattering 
cross section and B, the scattering angle, that is, the 
angle between v and v'. Since only elastic scatterings 
enter here, each group of particles with a definite speed 
(and hence energy) will move independently of any other 
group. In then follows that Eq. (2.2) can be solved 
separately for each group of particles with the same 
speed. It is further known that the diffusion coefficient 
D calculated from (2.2) is given by9 

(2.3) 

where 

ro(v)=2rrn1 v S' dBsin81(v, B)[l-cosB] (2.4) 
o 

is the diffusion relaxation rate, and the brackets ( >0 
represent the thermal average. 

We now propose to simulate the dynamics of the 
particles in terms of correlated walks as follows. Let 
us take an sc lattice with a spacing ao. A particle is al­
lowed to move on the lattice sites with the same speed 

/3 
FIG. 1. The particle, after 
hitting a scatterer, will move 
forward, sideways, or back­
ward with the probabilities a, 
y, or {3, respectively. 

v and only along the cubic axes, that is, in the six direc­
tions (x+, x_, y+, y_, z., andz_directions). Impurities 
(scatterers) will now be distributed on lattice sites at 
random; each site is occupied by impurity with the same 
probability. If the particle hits a scatterer, which hap­
pens with probability q, it will move forward, reverse, 
or turn with the following probabilities: 

_ f~o dB sinBI(v, B) 
O'o(forward) - n dB sinBI(v, B) 

_ n-eode sin81(v, e) 
Bo(reverse) - fOde sinel(v, B) 

Yo (turn) = HI - (Yo - 130) , 

(2.5) 

where Bo is chosen such that the partial forward scat­
tering corresponds to one sixth of the total solid angle 
4rr: 

80 

trr =' 2rr f 0 de sinB 

or 

Bo = cos-1m . (2.6) 

See Fig. 1. 

If the particle does not hit the scatterer, which should 
happen with the probability 1 - q, it should continue to 
move in the same direction. 

In summary, the particle moves on the lattice with 
correlated directions as follows. It may proceed in the 
same direction as the previous direction with the prob­
ability 0' =- qO'o+ (1 - q), turn back with the probability 
13 =- qBo, or turn at right angles (four possible directions) 
with the probability y =- qyo. 

It is clear that the dynamics of the particle moving on 
the lattice is very similar to that of the Lorentz gas 
particle. The major difference lies in the fact that the 
directions of the particle in our lattice model are re­
stricted to the six general directions. If one ·is in­
terested in the macroscopic properties of the gas, the 
step length ao, which appears in the model, can be 
eliminated in a reasonable manner as we will see in 
Sec. III. 

III. DIFFUSION COEFFICIENT 

According to the rules prescribed in Sec. II the particle 
moves on the lattice one step per unit time: 
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(3.1) 

Let P .(x, y, z, N) be the probability that the particle ar­
rives at the site (xao, yao, zao) with the direction a at 
the time NT. The six directions will be named by 

(x., x_, y., y_, z., zJ=(1, 2, 3, 4, 5,6). (3.2) 

The probabilities of arrival with direction, p., will 
satisfy the following equations: 

Pl(x, y, z, N) 

+y L Pb(x-1,y,z,N-1) (3.3) 
b=3, 4, 5, 6 

and similar equations for P 2 , ••• ,Ps . These difference 
equations may be solved subject to given initial conditions. 

Let us first consider the case in which, at the initial 
time N =0, the particle arrives at the origin with the 
direction a = 1; this can be expressed by 

(3.4) 

For small N, the solution may be worked out by draw­
ing appropriate diagrams. The analytic solution for a 
general N is difficult to obtain. It is, however, known 
that moments such as 

(r2)= LLLL(x2+y2+Z2)PAx, y, z, N) (3.5) 
a x Y I 

can be obtained in terms of the solutions of the one­
dimensional correlated walks. 7 The result for (r) is 
as follows: 

(3.6) 

where 

~=O'-B • (3.7) 

For large N, the first term dominates except when 0' = 1, 
in which case (r) equals N2~. The mean square dis­
placement at the time NT is connected with the diffusion 
coefficient D bylO 

(r) = 6DNT for large N . (3.8) 

Using this relation, we obtain 

1 1+~2 -1 D=a 1-~ ao T • (3.9) 

The diffusion coefficient D obtained here depends on 
the model parameters (ao, T), which may be eliminated 
in the following manner. 

In the Lorentz gas model there exists a definite col­
lision rate 1ho given by 

l/To =n1vu , 

where 

U=21T {W d9sin91(v, 9) 

(3.10) 

(3.11) 

is the total cross section. The mean free path defined 
by 

(3.12) 

does not depend on the speed of the moving particle. 
The probability of moving without suffering collision, 
is proportional to the distance L traveled and should be 
given by L/l for small L. We may therefore postulate 
that the probability q of hitting a scatterer after the length 
of travel ao is given by 

(3.13) 

which is valid for small ao. Let us now define the 
kinetic-theoretical limit: 

(3.14) 

such that 

aoh =V (speed) = finite , (3.15) 
(n1ur l =l (mean free path) = finite 

In this limit, the diffusion coefficient D is reduced to 

1 
D =-

3 
(3.16) 

where 

(3. 17) 

If the distribution of particles is given, Eq. (3.16) 
should be averaged with the distribution. It should be 
noted that the result [Eqs. (3.16) and (3.17)] is in 
essential agreement with the standard formula given by 
Eqs. (2.3) and (2.4) based on the Boltzmann equation. 
In fact, if we assume that the particle will be scattered 
forward, backward, or Sideways, the Boltzmann formula 
[Eqs. (2.3) and (2.4)] reduces to Eqs. (3.16) and (3.17). 
The contribution of the gain term, that is, the integral 
with the factor cos9 in Eq. (2.4), is represented by the 
terms involving 0'0 and i30 • That is, 

r 1 =n Ivu(l- (cos9)se) , 

where 

(3. 18) 

(cos9).e = 0'0 cosO + 41'0 cos (h) + i30 COS(1T) = 0'0 - $0. (3.19) 

IV. APPROACH TO EQUILIBRIUM OF A 
HOMOGENEOUS SYSTEM 

Let us consider a "homogeneous" state in which the 
particle distribution does not change from place to place. 
If such a condition is realized at some time, it will be 
maintained thereafter. We will study the evolution of the 
directional probabilities in the present section. 

Let us assume that at the initial time N = 0 the particles 
arrive at any and every lattice site with the direction 1 
with the same probability. This initial condition can be 
expressed by 

(4.1) 

where C is a positive constant. Let us solve the dif­
ference equations (3.3) under this condition. 

Since the solutions do not depend on the pOSition 
coordinates (x, y, z), we drop these coordinates and in­
troduce new probabilities {p.} by 

P .(N) = CP.(N) (4.2) 
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with the normalization o 

L,aPAN) = 1 • (4.3) 

Let us construct a row matrix, called a state vector, 
representing the probability distribution Pa(N) by -.5 

(4.4) 

The initial condition corresponding to Eq. (4.1) is given 
by 

p(O) = (1, 0, 0, ... , 0) . 

Using Eq. (3.3), we obtain 

p(N) =p(N - 1)· T , 

where T represents the transition matrix given by 

ry {3 y y y y 

{3 0' Y Y Y Y 

T", Y Y 0' (3 Y Y 

y y {3 0' Y Y 

Y Y Y Y 0' {3 

Y Y Y Y (3 0' 

(4.5) 

(4.6) 

(4.7) 

The matrix equation (4.6) has the standard form of a 
finite Markoff chain equation. 11 With the initial condition 
[Eq. (4.5)J, it can be solved in an elementary manner. 
The results are as follows: 

P1(N) =t[1 +3(0' - (3)N +2(0' +(3 - 2ytJ 

Pa(N) =t[1- 3(0' - (3)N +2(a + (3 - 2y)N] (4.8) 

P3(N) =P4(N) =P5(N) =Ps(N) =t[1- (0' +{3 - 2y)N] • 

For a set of values, 0' =0.95, {3 =y =0. 01, the p's are 
shown by solid lines in Fig. 2. We observe the follow­
ing properties. 

(a) Unless a = 1, in which case the particle moves al­
ways in the same direction (no scattering), the prob-

p, (N) = p,(N)=···J:j(N) 
2 6 

12 16 20 

FIG. 2. Directional probabilities (pjo P2' ••• ) as a function of 
of N. The solutions [Eq. (4.8)1 with Q! = O. 95 and f3 =Y = O. 01 
are joined by solid lines. The solutions [Eq. (5.3) 1 with reflect 
ing boundary are joined by broken lines. 

-1.0 H(N) 

-1.5 

-in6 

o 4 8 12 16 
N 

20 

FIG. 3. Boltzmann H-function [Eq. (4,12)1 defined with the 
directional probability distribution P as a function of time NT. 
Q! = O. 95; f3 = Y = O. 01. 

ability distribution approaches a stationary state in 
which all "momentum" states are occupied by the same 
probability t. Since, all states a=1, 2, ... ,6 can be 
viewed as states of equal energy, we may interpret the 
above result as the manifestation of the ergodicity. 

(b) The distribution approaches equilibrium exponen­
tially with two relaxation times. In the kinetic theoret­
icallimit defined by Eqs. (3.14) and (3.15), Eqs. (4.8) 
become 

PI(t) =t(1 +3e-rlt + 2e-rat ) 

P2(t) =t(1- 3e-rlt + 2e-rat ) 

P3(t) = ... =Ps(t) =t(1 - e-r2t ) , 

where 

t"'NT, 

and 

(4.9) 

(4.10) 

(4. 11) 

where P a represents the Legendre polynomial of degree 
2. The relaxation time T1 = ri l is the same as that de­
fined in Eq. (3.17), which characterizes the diffusion. 
The second relaxation time T2'" r;l has the same order 
of magnitude as T1, but in general differs from the 
latter. Only in the case of hard sphere interaction, for 
which 0'0'" (30 =Yo, do both relaxation times agree in 
value. We further note that the relaxation time T2 

characterizes the growth of the probabilities P3, •.. , Ps 
of those states that have directions perpendicular to the 
direction of the initially populated state a = 1. 

(c) In order to see the global approach to equilibrium, 
let us introduce Boltzmann's H function, 

(4.12) 

This function is numerically computed, using the same 
parameters (0' =0.95, (:l=y=0.01) and shown in Fig. 3. 
The H -function monotonically decreases and reaches 
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FIG. 4. Finite lattice with a 
reflecting boundary that is 
located half a lattice constant 
away from the outermost lattice 
points. 

REFLECTING BOUNDARY 

equilibrium. More discussions will be given in Secs. 
V-VII. 

V. CORRELATED WALKS ON A FINITE LATTICE 

Let us consider a lattice with a reflecting boundary 
(see Fig. 4). The reflecting boundary dictates that if 
the particle leaves an outermost site toward the bound­
ary that is half the lattice constant away, it should re­
turn to that site with the direction reversed. Inside the 
lattice, the same dynamics prescribed by Eqs. (3.3) 
will be assumed. A general solution with an arbitrary 
initial condition is hard to obtain. We can, however, 
obtain the following results. 

A. Ergodieity 

At whatever site and in whatever direction the particle 
may start initially, the probability distribution as given 
by p.(x, y, z, t) approaches a stationary state, which is 
"homogeneous" and "isotropic," that is, 

p.(x, y, z, N)-const as N-oo . (5.1) 

In order to show this property, it is sufficient to ob­
servell that some finite powers of the transition matrix, 
such as T in Eq. (4.7) whose linear dimension has six 
times the number of lattice points, should exhibit all non­
vanishing elements. Such analysis can simply be carried 
out for.a lattice of small size. It is found that this is the 
case if Ci, 8, and yare all nonzero (and positive). 

It is interesting to note that this ergodicity is found for 
a finite lattice without invoking the bulk (or thermo­
dynamic) limit. General questions, such as whether a 
system approaches equilibrium or not, are believed to 
depend on the intrinsic elements of dynamics as charac­
terized by step probabilities (or alternatively by the 
Hamiltonian of the system), and not on the boundary 
condition. 12 See the following for further discussion. 

B. Single-site lattice with a reflecting boundary 

Let us take an extreme case in which there exists only 
one lattice point. This point is surrounded by six re­
flecting walls. At every unit time the particle should 
arrive at the same lattice point with a changing direc­
tion. Let us consider the state vector p' = (P{, P2' •.. , 
p~), which represents the probability distribution in di­
rection. The dynamics is characterized by the Markoff 
chain equation (4.6) with the following transition matrix 

i3 Ci Y Y Y Y 

Ci i3 y y y y 

y y i3 Ci Y Y 
T= 

y Ci i3 y y 
(5.2) 

y y y i3 Ci 

Y Y Y Ci i3 

We assume the same initial condition as before, that is, 
Eq. (4.5). The solutions for this case are given by 

pHN) =t[1 +3(i3 - Ci)N +2(Ci +i3 - 2y)N] 

Pa(N) =t[1- 3(i3 - Ci)N +2(Ci +i3 - 2y)N] (5.3) 

pHN) =pHN) =N(N) =pHN) =t[1- (Ci +i3 - 2y)N] • 

First, we note that all probabilities approach the same 
value, t, as N tends to infinity. This is a manifestation 
of the ergodicity as discussed earlier. 

The present solutions [Eqs. (5.3)] have a close con­
nection to the solutions [Eqs. (4.8)], which were ob­
tained with the homogeneity assumption. The condition 
of homogeneity, that is, site independence, for the 
probabilities p. is equivalent to assuming the periodic 
boundary condition for a "single-site" lattice. A closer 
look indicates that the two solutions [Eqs. (4.8)] and 
[Eqs. (5.3)] are mutually obtainable with the interchange: 
Ci::i3. 

When Ci» i3, the probabilities M(N) and p2(N) oscillate 
violently for the reflecting boundary as shown in Fig. 
2, and the same quantities smoothly approach equilibrium 
for the periodic boundary. In spite of this difference, 
the H-function H(N) is found to be the same for both bound­
aries, and it shows a monotonic approach to the equi­
librium value equal to - In6 (see Fig. 3). In other words, 
our system approaches equilibrium with the same rate 
for both boundaries. While the coincidence of the H­

function may be accidental, the same relaxation times 
71 and 72 should characterize the evolution of the direc­
tional probabilities for a general boundary. It is also 
interesting to note that despite the oscillatory evolution 
of the probabilities pW) and pf(t), the H-function is 
smooth and monotoni.c. 

VI. CORRELATED WALKS ON bee AND fee LATTICES 

A. The bee lattiees 

A walker is allowed to move from one site to its 
nearest neighbor with the following rules. It may move 
in the same direction as that of the previous step with 
probability Ci b , see Fig. 5, turn at 9 = cos-1(t) with 

8b~ -I 8. = cos (113) 
~ 0 

FIG. 5. Step probabilities for the bcc lattice. They are nor­
malized such that O<b + 30b + 3€b+ f3b = 1. 
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4 

7 

6 

3 

5 

8 

FIG. 6. Nearest-neighbor di­
rections from the center (dot) 
to eight corners (triangles) are 
designated by I, 2, .•. , 8. 

probability 5b (there are three possibilities), turn at 
o = 1T - cos-1(t) with probability Eb (three possibilities), 
or reverse with probability (3b' The step probabilities 
are normalized such that 

(6.1) 

where various numerical factors correspond to the num­
bers of possible turns at each angle. 

The mean square displacement (~) can be calculated 
in a similar manner, and it can be expressed in the 
same form as Eq. (3.6) with the following substitution: 

(6.2) 

The diffusion coefficient D for the lattice is given by 
Eq. (3.9) with the new D- b • 

The step probabilities a b , (3b'" can be related to 
partial cross sections aabo, a(3bo, ••• as follows: 

a b = 1 - q +qabo, (3b =q(3bO , 

5b =q5bO , Eb =qEbO , 

where 

J~b dO sinOI(v, 0) 
abO (forward) == J- () odO sinO[ v, 0 

= J;-IIbdO sinOI(v, 0) 
(3bO (backward) - n dO sinO[(v, 0) 

35 == J;:2dO sinO[(v, 0) 
bO gdO sinO[(v, 0) 

(6.3) 

3E == J;7: dO sinO[(v, 0) 
bO J~dO sinO[(v, 0) 

(6.4) 

where 

0b == cos-1(t) . (6.5) 

In the kinetic-theoretical limit, the diffusion coef­
ficient D becomes 

(6.6) 

where 

(6.7) 

The results [Eqs. (6.6) and (6.7)] are similar to Eqs. 
(3.16) and (3.17), and can be interpreted in an analogous 
manner. In particular, the diffusion coefficient is given 
in terms of the relaxation rate r1b

). 

Let us name the directions of steps by 1, 2, ... , 8 as 
given in Fig. 6. 

Let us assume a homogeneous initial condition: 

Pa(O) =5a,1 ' (6.8) 

The state vector p == (P1 , P2 , ••• , Ps) satisfies the 
Markoff chain equation (4.6) with the following transi-
tion matrix: 

a (3 5 E 5 E 5 E 

(3 a E 5 E 5 E 5 

5 E a (3 5 E 5 E 

T(b) == E 5 (3 a E 5 E 5 
(6.9) 

5 E 5 E a (3 5 E 

E 5 E 5 (3 a E 5 

5 E 5 E 5 E a (3 

E 5 E 5 E 5 (3 a 

After lengthy calculations, the following solutions 
are obtained. 

Pl(N) =t [1 +3(ab+(3b - 5b -Eb)N + (a b - (3b -35b+3Ebf +3(ab - (3b+ 5b - Eb)N] 

Pa(N) =i[1 + 3(ab + (3b - 5b - Eb)N - (a b - (3b - 35b +3Eb)N - 3(ab - (3b + 5b - Eb)N] 

P3(N) =P5(N) =P7(N) =t [1 - (a b + (3b - 5b - Eb)N - (a b - (3b - 35b +3Eb)N + (a b - (3b + 5b - Eb)N] 

P4(N) =P6(N) =Ps(N) =t [1 - (a b +(3b - 5b - Eb)N + (a b - (3b - 35b +3Eb)N - (a b - (3b + 5b - Eb)N] • 

(6.10) 

This result is similar to Eqs. (4.8). The most distinctive feature is that the approach to equilibrium is now charac­
terized by three relation rates (r1b), r~b), r~b)), where 

r1b) == n rva(1 - (COSO)bcC) == nrva(1 - abO + (3bO - 5bO - Ebo) 

r~b) == n rva[l - (P2(cos9)bCC] =n rva(1 - abO - (3bO + 5bO + Ebo) (6. 11) 
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--/MQo 

'" Gf ------4~o 

FIG. 7. Step probabilities for the fcc lattice. They are nor­
malized such that a f +4c5f +2'yf+4Ef +Pf= 1. 

B. The fcc lattices 

The step probabilities for the fcc lattice are shown in 
Fig. 7. They are normalized such that 

(6.12) 

The mean square displacement (r2) is found to be ex­
pressed in the form [Eq. (3.6)] with the substitution 

(6.13) 

The diffusion coefficient D is given by Eq. (3.9) with 

a {3 /i E: /i E: /i E: /i E: 

{3 a E: /i E: /i E: /i E: /i 

/i E: a {3 Y Y E: /i /i E: 

E /i {3 a Y Y /i E E /i 

/i E Y Y a {3 /i E E /i 

T(fl = E /i Y Y {3 a E /i /i E 

/i E E: /i /i E a {3 Y Y 

E /i /i E: E: /i {3 a Y Y 

/i E /i E E: /i Y Y a /3 

E: /i E /i /i E Y Y {3 a 

Y Y E /i E /i /i E /i E: 

Y Y /i E /i E E /i E /i 

Y 

Y 

E: 

/i 

E 

/i 

/i 

E 

/i 

E: 

a 

(3 

12 

6 

II 

FIG. 8. Twelve nearest-neigh­
bor directions from the center 
(dot) to corners (triangles) for 
the fcc lattice are designated 
by 1, 2, ... , 12. 

the new A f • In the kinetic-theoretical limit, this quanti­
ty D can be expressed in the form [Eq. (3.16)] with the 
diffusion-relaxation rate 

r1'l '" n rV<T(1 - afo - 2/ifO + 2E: fO + (3fO) • 

= n rV<T(1 - (COS9)fcc) (6.14) 

The twelve directions of steps are shown and designated 
by 1, 2, ... , 12 in Fig. 8. The state vector P'" (Ph 
P2, ••• , P12) obeys the Markoff chain equation (4.6) with 
the transition matrix 

Y 

Y 

/i 

E 

/i 

E (6.15) 

E 

/i 

E 

/i 

{3 

a 

With the initial condition Eq. (6.8), this equation is solved, and the results are as follows. 

P1(N) =n [1 + 3(af - {3f + 2/ir 2E f )N +3 (af + {3f - 2Yf)N + 2(af + {3f + 2Yf - 215f - 2Ef)N +3 (af - /3f - 2/if + 2E:f r] , 

P2(N) =-h[1 - 3 (a f - {3f + 2/if - 2E fr +3 (af + {3f - 2Yf)N +2(af + {3f + 2Yf - 2/if - 2E: f )N - 3(af - (3f - 2/if + 2Ef)N] , 

P3(N) =Ps(N) =P7(N) =P9(N) =-B[1 +~(ar {3f + 2/if - 2E:f)N - (af + {3f + 2Yf - 2/if - 2Ef )N - Haf - (3f - 2/if - 2/if + 2Efr] , 

P4(N) =Ps(N) =Pa(N) =P10(N) =-h[I-~(af - {3f+2/if - 2E f )N - (af +{3f+2Yf - 2/if - 2Ef )N +~(af - (3f - 2/if+2Ef )N] , 

Pll(N) =P12(N) =Ml- 3(af +{3f- 2Yf)N +2(af +{3f+2Yf - 2/ir 2E f )N]. (6.16) 

A significant feature is that all P's approach equilibrium lattices. Since our lattice model is easier to handle, 
exponentially, characterized by four relaxation times. we have obtained several exact results; these are 

VII. REMARKS 

In conclusion, we have established a close connection 
between the Lorentz gas and correlated walks on cubic 

enumerated in Sec. I. Some of the results are intuitively 
obvious. The fact that the ergodicity is proved for a 
frnite lattice is noteworthy. The bulk limit, which had 
often been thought of as a necessary ingredient for the 
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irreversibility,12 is not used here. The irreversibility 
should depend on the intrinsic microprocesses and not 
on the initial and boundary conditions. In our model, 
when (\' = 1 (no scattering), the system is nonergodic. 
However, as soon as collisions are allowed so that (\' 
< 1, the system becomes ergodic. The global approach 
to equilibrium, as studied in terms of the H-function, 
does not depend on the nature of the boundary condition 
imposed on our lattice model. In fact, it is possible to 
show that the H-function for the single-site lattice with 
a mixed boundary, that is, periodic in one direction and 
reflecting in other, has the same value. Although such 
coincidence is viewed as accidental, the fact that the 
evolution of the directional probabilities is characterized 
by the same intrinsic relaxation times should hold for a 
general boundary condition. 

Comparative studies of the correlated walks on sc, 
bcc, and fcc lattices indicate the existence of different 
numbers of relaxation times (Tl' • 0., T 4) that characterize 
the evolutions of the directional probabilities. This 
implies that the solutions of the Boltzmann equation, 
which is equivalent to the continuum limit of the Mark-
off chain equation (4.6), should involve an indefinite 
number of relaxation times. The explicitly obtained 
relaxation times T h ••• , T 4 all agree in value for the 
hard-sphere interaction. 

The evolution of the probabilities of arrival with di­
rection, Pa(X, y, Z, N), can be studied from the funda­
mental difference equations (3.3). This is a much harder 
problem. The solution of the same problem in one 
dimension, however, has been obtained and will be re­
ported in a separate paper. 13 This solution is found to 
depend on the boundary. 

A significant merit of correlated walks is that the 
model can be applied even when the relation between 
step probabilities and microprocesses cannot be repre­
sented simply in terms of the differential cross section. 
Various phenomena, that can be described in terms of 
the model were enumerated in Section I. 
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