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A walker is allowed to move on the simple cubic lattice with the following rules: If it should arrive at any site, it
may move in the same direction as that of the previous step with probability a, turn at right angles with probability
¥, reverse with probability 5, or remain with probability o, normalized such that @ + 4y + B + o = 1. If it were at
rest, it may move in any direction with the same probability & or remain with probability o', normalized such that
61 + o' = 1. An exact expression for the mean-square displacement {72} after N units of time is derived. From this
expression, the diffusion coefficient D is obtained as follows: D =(1/6)(1+a —B)1 —a + )"

X[1+0/(1 —o")] 'alr "', where a, is the step length and 7 the unit of time. Similar results are obtained for
the face-centered and body-centered cubic lattices. These results are used to discuss the atomic diffusion in cubic
crystals with impurities, which act as traps. Comparison with previous experimental and theoretical results is made

and discussed.

I. INTRODUCTION

Recent experiments using neutron scattering1 and
other techniques2 showed that hydrogen atoms
diffusing in a metallic crystal like niobium are
influenced strongly by interstitial impurities
such as nitrogen atoms, which act as traps. The
effective diffusion coefficient D for such a system
can be several times smaller than the diffusion
coefficient D for pure metal. Fedders® developed
a correlation-function theory of atomic diffusion
for a crystal with a random distribution of deep
traps and obtained the relation

D=Dy(1+ cT 191, (1.1)

where ¢ is the concentration of impurities and 74
and 7 are the average-jump and trap time, re-
spectively. In a typical experiment a.nalysis,1

the trap time 7 is estimated to be several hundred
times greater than the jump time 73, and the con-
centration ¢ ranges between 0.004 and 0.007. Fed-
der’s result is in qualitative agreement with the
experiments.

The purpose of this paper is to present a theory
of atomic diffusion on the basis of correlated
walks.**® Our model for a simple cubic (sc) lattice
is set up as follows. A walker (model atom) is
allowed to jump between nearest-neighbor lattice
sites per unit time 7, or to stay at the same site
with the following rules: If it should arrive at any
site, it may move in the same direction as that of
the previous step with probability «, turn at right
angles with probability ¥, reverse with probability
B, or remain at that site with probability o [see
Fig. 1(a)]. The step probabilities are normalized

22

such that
a+4y+B+o=1, (1.2a)

where the numerical factor 4 corresponds to the
number of possibilities of turning at right angles.
If the walker were at rest, it might move in any
direction with the same probability 4 or remain
with probability ¢’ with the normalization

6u+to'=1. (1.2b)

[See Fig. 1(b).]

The connection between the present model and
the atomic diffusion is rather obvious. For defi-
niteness let us assume that the atoms migrate on
interstitial sites, which also form an sc lattice

. U ,
—_—— SN
&—— 3 — e o
(a)
o= O®
B o’
(b)

FIG. 1. The probabilities of possible moves with
correlation for the sc lattice. They are normalized
such that & +4y+8 +0=1 and 6p +o’=1.
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with the same lattice constant ¢;. This lattice
can be used as the reference lattice in the model.
If the concentration of diffusing atoms is small,
atoms should move independently of each other.
This allows us to describe the diffusion in terms
of a single particle migrating on the lattice. Let
us first consider a perfect lattice without impuri-
ties. The jump rate should be the same every-
where on the lattice, and the average jump time
71 from one site to the next will be taken to be

the unit time 7 in the model. In order to jump,
the atom must overcome a certain energy barrier
which is formed by the surrounding lattice mole-
cules. Once the atom moves to a new site, it
faces another barrier at that site. Since the atom
carries momentum, the jump probabilities will be
correlated. Once the atom starts to move, it
may jump over several sites in succession. Col-
loquially speaking, the atom acquires a “momen-
tum,” and this carries it over several sites. Such
correlated motion can, to some degree, be de-
scribed in terms of the step probabilities «, B,
and ¥. If, on the other hand, the atom were sta-
tionary, it might move in any direction without
preference; this possibility is represented by the
start-to-move probability 1. The atom may also
remain at the same site, and it may come to a
stop temporarily. To account for these possibili-
ties we use the probabilities ¢’ and o.

In the main body of the paper we will derive an
exact expression for the mean-square displace-
ment (% of the walker after N units of time. The
result is given by (3.9). By using the known re-
lation® between the mean-square displacement and
the diffusion coefficient D, we obtain

_ 1+a-5 (_z_f_,_
Te(l-a+B)1+0/(1=-0")] T’

where a; is the nearest-neighbor distance, which
is equal to the lattice constant in this case.

Our theory can be extended simply to other cubic
lattices, face-centered cubic (fcc), and body-cen-
tered cubic (bcc) lattices. The results for the
diffusion coefficient are similar to (1.3).

D (1.3)

So far we have considered a perfect lattice with '

no impurities. Let us now assume that interstitial
impurities are introduced and distributed uniform-
ly over the lattice with a concentration ¢. These
impurities in general should cause the change in
jump probabilities not only at the particular in-
terstitial sites where they are located, but also

at the surrounding sites. But the most significant
change should occur in the come-to-stop proba-
bility o and the stay-stationary probability o’,

both at the very same impurity sites. Let (o9, 0)
[(o1, 0{)] be the probabilities when the interstitial
site is occupied [unoccupied] by impurity. The
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probability of the occupation is equal to the concen-
tration c. The moving probabilities (a, 8, ¥) will
be chosen to be the same as before. (This as-
sumption will be reasonable if the concentration

¢ of impurities is low.) We can then obtain the
following expression for the effective diffusion
coefficient:

4

D=D0/(1—c+c#——LiI;;g_z{D, (1.4)
where D, represents the diffusion coefficient for
a perfect crystal, that is, expression (1.3) with
(0, 0')=(0,,0}). In the limit of low concentration
(c «<1), our expression (1.4) agrees with the re-
sult of Fedders (1.1). A more detailed discussion
of our results is given in Sec. V.

In Sec. II correlated walks on an auxiliary lat-
tice are formulated and solved by means of gen-
erating-function techniques. The solutions are
used in Secs. III and IV to obtain the mean-square
displacements {»?) for the sc, fcc, and bee lat-
tices.

II. CORRELATED WALKS ON AN AUXILIARY
LATTICE

Let us consider a simple orthogonal lattice in
four dimensions. The object (walker) starts at
the origin and moves one step per unit time along
the positive X, Y, Z, or U axes. The four direc-
tions of steps will be designated by 1, 2, 3, and
4, respectively. If the last step has the direction
a, the probabilities of stepping along the positive
X, Y, Z, and U axes will be denoted by p,, qq 7o
and s,, respectively, with the normalization

Patqo+v,+s,=1. 2.1)

After N units of time, the object will arrive at a
site whose coordinates (X, Y, Z, U) satisfy

X+Y+Z+U=N. (2.2)

The site of arrival may therefore be specified by
(X,Y,Z,N). Let the probability of the object ar-
riving at (X, ¥, Z, N) with direction a be
P,X,Y,Z,N). Consideration of two successive
steps yields the following relations for P,:

4 .
Pi(X,Y,2,N) =2 p, P,(X=1,Y,Z,N=1),
a=1
PZ(X: Y)Z9N):qupa(X; Y~ I,Z,N-— 1),
. ¢ (2.3)
PyX,Y,Z,N)= 7, P,(X,Y,Z-1,N-1),

Py(X,Y,Z,N)=) s, P,(X,¥,Z,N=1),
a

where all arguments for P’s are non-negative.
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This set of difference equations may be solved
subject to a given initial condition. We will as-
sume that the object arrived at the origin with di-
rection 4, which may be expressed by

PX,Y,Z,0)=0x,00y,007,000,4, (2.4)

where the symbol 0 denotes the Kronecker delta.
From the dynamics of the walker, it is clear
that

P,(X,Y,Z,N)=0 if X+Y+Z>N, (2.5)

Let us introduce genevating functions:

(g, m, &, v)= g &En'e?WP X, Y, Z,N)

z
n
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(2.8)

where the last member was obtained with the aid
of (2.5). Multiplying Eqs. (2.3) by &n'¢%",
summing with respect to X, Y, Z, and N, and
using (2.4) and (2.6), we obtain

Laprbv  =padv =psbv  —pydv h 0
- l-@m  -gv —qaw | (Y| |0
-ty =miv 1-wmlv —nlv U3 0

-S1v — SV —SgVv l=sw| | U 1
(2.7)

These equations can be solved in an elementary
manner, yielding

(®)s
Vo= 775 (2.8)
where T=(T;;) represents the 4 X4 matrix appear-
ing in (2.7), TTI is its determinant, and (#),, is
the cofactor of the element 74, ,.
- The probability that the walker arrives at
(X,Y, Z,N) from any direction is given by

S PX,Y,2,N)=P(X, Y, Z,N). 2.9)

The generating function of this quantity is provided
by
Z Zpa(&’ n, g,V)EZ[)(g, 77,'?;, V) . (2.10)
a

The theory and results presented here will be used
in the following two sections.

[II. CORRELATED WALKS ON THE sc LATTICE

Let us consider an sc lattice. A walker is allow-
ed to jump between nearest-neighbor sites per unit
time 7 or to stay at the same site with the rules
given in the Introduction. We assume that the

walker was stationary at the origin O up to the
initial time N=0. We wish to find the mean square
of the displacement » of the walker after N units

of time:

(rly=( +y* +27)

=@y + (9 + (2D . (3.1)

Since the elements of dynamics given by step
probabilities and the initial condition are both
symmetric with respect to all directions, the
three averages on the right-hand side must have
the same value. We therefore have

(rty =3(x% . (3.2)

The average <x2> can be calculated by consider-
ing the projected motion of the walker along the x
axis. The walker may appear to move right, left,
or to be stationary, the last alternative arises
either from the motion in the y and z directions,
or from no real motion. The projection may now
be represented in terms of the motion of the ob-
ject on the auxiliary four-dimensional lattice in-
troduced in Sec. II with the correspondence

right step ——positive step in X,
left step -—positive stepin Y, (3.3)
stationary (sideways move) — positive step in Z,
stationary (no move) — positive step in U,

and

P11 M1 Ss1
b2 q2 72 S2 4y o

b3 qs 73 S3 Yy a+2y+B o

T R ™ g
Q

bs qs 7y Ss M 4u o’

(3.4)

The displacement x on the sc lattice corresponds
to the difference X — Y on the auxiliary lattice.
We therefore have

(/=X = )Yy =(XH +(¥YH - «XY), (3.5)

where a, represents the step length, that is, the
nearest-neighbor distance.

The average (X°) depends on the time N7. From
(2.6), (2.9), and (2.10), this quantity can be ob-
tained from

9 9

E—Ed)(&, n,&,v)

. N/y2
a—g 3 = Z 14 <X >N . (3.6)

E=n=t=1 N=0

In a similar manner, the averages (¥ and (XY)
can be computed. It then follows that (72) =3
can be calculated from
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2,0 0 2 , 3
Gz?’(a.s£ 2E Ton " an 2 a&«?n)‘”(g’ IL2)
=2 Yy (3.7)
N=0

After straightforward calculations using (2.7),

(1-0Y1+a-p)
(r'y/ay= (1-a+B)(1=0"+0)
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(2.8), and (2.10), we obtain

1-¢)1+(a-

(1-o)[1+(a-Blv]y (3.8)

=== (e—pWi-(o' o] "

After further extensive calculations, we obtain

Ne-(1-0)(1=-a+B)t(1=0'+0)%(a=B-0o" +0)"

x{2(a=B)(1=0'+a)a=B-0¢' +o= (1 =o'+ o) a-B"]

+(0' = o)1= a+p)[(1+a~p)a-B-0"+0)

The significance of this result will be discussed in
Sec. V.

IV. CORRELATED WALKS ON fcc AND bee LATTICES

A. fcc lattice

Correlated walks on the fcc lattice can be set
up, and the mean-square displacement can be cal-
culated in a similar manner. A walker is allowed
to move on the lattice with the following rules: If

a4 & Z

—_—— /A 60°
% &

120°

e 'B' ——)(:) o

(a)

p

O—= H (@0)

(b)

FIG. 2. The probabilities of possible moves for the
fce lattice. They are normalized such that o+ 46, + 2y,
+4€;+8;+0=1and 12 pr+0o’=1.

+(1=a+B)(a=B+0' =0)o' - 0)]}. (3.9)

it should arrive at any site, it may move in the
same direction as that of the previous step with
probability o, (see Fig. 2), turn at 60° with proba-
bility 6, (there are four possibilities), turn at 90°
with probability v, (two possibilities), turn at 120°
with probability ¢, (four possibilities), turn at 180°
with probability B, or it may remain with proba-
bility 0. The step probabilities are normalized
such that

O + 40, +27, +4g, + B, +o=1, (4.1)

where various numerical factors correspond to
the possibilities of turning at each angle.

If the walker should happen to be at rest, it may
move out in any direction with the same probability
ks or remain with probability o', with the normal-
ization

120 +0'=0. (4.2)

The staying probabilities are denoted by o and o’
without subscripts as they do not depend on the
lattice type, by assumption. The walker starts at
the origin O from rest as before.

Let us choose the Cartesian axes along the cubic
axes. Then, the mean-square displacement can
again be equal to three times the mean-square dis-
placement in one direction:

<7’2> = 3<x2> .

The average (x* can now be calculated by looking
at the projection of the motion along the x axis,
which can be represented in terms of the corre-
lated walks on the four-dimensional lattice with
the following correspondence:
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P11 oSy +28:+7; By+v,+2g, 20,+2¢ o

b2 qa vy Sy Bs+2g; + 74 @ +28,+v, 25, +2¢ o

(4.3)

bs g3 73 S3 20, +2¢; 20 +2g, Q27 4B; @

Ps qa 74 Sy 4y 4,

The projection reduces the step length by the fac-
tor 1. We may now compute (%) in the same man-
ner as before. The results obtained for (%) are
found to be expressed as in the form of (3.9) with
the following substitutions:

a=0,+20,+7,, (4.4)
B=B;+2¢g;+7.

B. bcc lattice

Correlated walks on the bcc lattice can be treat-
ed in a similar manner. Only main steps will be
indicated below. The step probabilities with cor-
relation are shown in Fig. 3. They are normal-
ized such that

a, +36, +3¢, +B, +to=1, (4.5)
8u, +o'=1.

The projected motion along one of the cubic axes
will be right, left, or at rest. The last alterna-
tive can arise only from no real move. Thus, for

1-0)1+4)

(R /dy= 1-0"+0)(1-2)

4l~if 0'

this lattice, calculation of the average (x*) is a
little simpler and can be carried out in terms of
the solutions of correlated walks on a three-di-
mensional auxiliary lattice. The resulting expres-

- sion for (1’2> can again be written in the form of

(3.9) with the following substitutions:

=0, +26,+¢,, (4.6)
B8=B,+2g+5,.

In obtaining this result, we used the fact that the

projection reduces the step length ay by the factor
1/V3.

V. DISCUSSIONS

In the last two sections we have studied corre-
lated walks on the three cubic lattices and obtained
the mean-square displacement <1’2> after N units
of time. The results are similar and can be ex-
pressed in a unified form:

Ne(1-0)1=0'+0)%(1 - a) Y a-0¢ +0)*

x{2a(1-¢'+ o) a=-0c'+0~-(1 —o’+a)AN“]

+(0'=0)(1-2)[A+2)a=o"+0)+ (1= 2)(a+0"=0)o' - )]}, (5.1)

a-B for sc
A= { a,+26,-2¢,-B; for fcc (5.2)
@, + 6, - ¢, — B, for bee,

where (3.9), (4.4), and (4.6) were used. Since all
cases can be treated in a similar manner, we
will discuss the case of the sc lattice for definite-
ness.

In the limit @ —~1, which corresponds to the
particle moving always in the same direction, the
mean-square displacement (% approaches N®a},
as it should. Except for this case, the first term
on the right-hand side of (5.1) is proportional to
N and dominates for large N.

It is known that the long time limit of the mean-
square displacement (1*2) is connected with the
diffusion coefficient byﬁ

(r® =6DNT for large N. (5.3)

Thus, we find that except for the free-motion
limit (¢ =1) there exists a diffusion coefficient
D, which is given by

(1-0)1+2a) &

6(1-0'+0)(1=-2) 7 ° (5.4)

D:

Using this result, we will now discuss the atomic
diffusion.

A. Perfect crystals

Let us consider the case in which the particle
moves on the lattice without stopping. In mathe-
matical terms, 0=0¢'=0. The diffusion coeffi-
cient D is given by
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3,
e, g, = cos " (1/3)
&
g > Bo
(2 P
___;@ o
(a)

Co— o o

(b)

FIG. 3. The probabilities of possible moves for the
bee lattice. They are normalized such that o, + 36, + 3%,
+B,+0=1 and 8y, +o’ =1,

-

D= (5.5)

+ad
-AT "

ol
ey

This case roughly simulates the case of a Lo-
rentz gas in which the independently moving par-
ticles (electrons) are scattered elastically by
static scatterers (impurities) distributed at ran-

" dom. In fact, expression (5.5) is in essential
agreement with the result obtained based on the
Boltzmann equation,’ except for the fact that the
directions of the motion are restricted in our
model.’

Let us consider another extreme case where the
particle is allowed to jump just one step at a time.
This case is characterized by

a:ﬁ:y:O

From (5.4) we obtain
1 a
D=———— 2 .
6[1+0/(1=0")] 7 (5.6)
This result is similar to that of the usual random
walks®:

Dp= (5.7)

(<Y
S8,

The difference arises from the fact that the parti-
cle may stay at the same site and restart from
rest in our model. This allows the particle to
leave the site immediately or a number of rest-
times after arrival with probability weights, which
accounts for the “correction” factor:

1+o+00' +00%+ - =1+5(1=0")". (5.8)

The come-to-stop probability ¢ and the remain-
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stationary probability o’ should have different
values for different crystals. Equation (5.8)
therefore represents the effect of the difference
in the “trap” time.

The case of actual atomic diffusion should fall
between these two limits. The full expression
(5.4) should yield a good description of the diffu-
sion coefficient D.

B. Crystals with impurities
We have briefly discussed this case in the Intro-
duction. If the impurities are distributed with
concentration ¢ and generate significant change in
the come-to-stop (o) and stay-stationary (¢’) prob-
abilities only, we may replace the correction fac-
tor (5.8) by

1+C‘£g+(1—6)1f10{ . (5.9)
The three terms here correspond to the following
processes: (i) The particle arrives and leaves
with no intermediate stop, (ii) it arrives at an
impurity site, which occurs with the probability
¢, and eventually leaves, and (iii) it arrives at a
regular site and leaves. Introducing (5.9) in (5.6)
and rearranging terms, we obtain the expression
(1.4) quoted earlier,

1+0y/(1 = af)
D:Do/(l—C"‘C 1+02/(1_02)).

This new expression is different from Fedders’
expression (1.1) only in the additional term —c in
the denominator. If ¢ <1, the difference is negli-
gible. The validity of (1.4), however, should be
considerably greater. In fact, with inclusion of
the term —c, our expression yields a formally
correct result even in the high-concentration limit
c=1. This, however, may be deceptive because
high concentrations of impurities will change the
dynamics of hopping characterized by the step
probabilities (o, 8, 7).

The present theory can be extended simply to the
case in which there exist impurities of several
kinds. If the concentrations of different sites are
denoted by ¢y, ¢y, . .., With the normalization

citepter=1, (5.10)
the correction factor should take the form

Oy 011
1+¢ T-o! t+cy T-oh
- i §

+ce, (5.11)

where o, and o, denote, respectively, the come-
to-stop and stay-stationary probabilities at the
site of type @, a=I, II, .. ..

It is stressed that our expression (1.4) should
be valid for any type of lattice. We also note that
our main results (5.4) and (1.4) are obtained in an
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elementary manner without sophistications associ-
ated with the correlation-function techniques.
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