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Electrons and phonons in a small solid particle (i.e. a big cluster of
atoms) behave differently than in the solid in bulk. Due to the finite
number of atoms in the small particle, the electron band is discrete and
soft phonon modes are enhanced. Furthermore, any defect in the small
particle surface will induce fluctuations in the discrete electronic spec-
trum, giving rise to a statistical effect which may manifest itself in many
instances. For example, the transition temperature from the supercon-
ducting to the normal state in a small particle might differ from that of
the bulk superconductor.

In this note we consider Eliashberg’s equations [1] for strong-coupling
superconductors and take explicitly into account both the discreteness of
the electron energy levels and the spectrum fluctuations. We then obtain
an equation for the transition temperature 7, which turns out to be a
function of the size of the particle and of the spectrum fluctuations. The
resulting equation for T, is not exact, however, since the tree{tment has
been done using the grand-canonical ensemble, so the constancy of the
number of ‘electrons within each small particle is not taken care of. Nev-
ertheless, since this number is of the order of several thousands, the error
in T, thereby introduced should not be large [2]. Furthermore, we should
also mention that our treatment is not complete, since we have not allowed
for changes in the phonon spectrum due to the finite size of the particle.

We start from Eliashberg’s coupled equations for the renormalization
function Z(w) and the gap parameter A(w) and perform an angular average
over the electron states as done by Scalapino et al. [3]; we write them as
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2hw[l —Z(w)] = 3 T (w, w,) (D
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where the summation over the electron states must be performed taking
into account the discrete nature of the electronic spectrum.
In Egs. (1) and (2), J, are the electron-phonon interaction kernels, given

by
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where f{ w, ) is the Fermi distribution function and hwp are the quasi-

particle energies, related to the bare electron energies € which are meas-
. 2 . p

ured from the Fermi level e, = pg [2m, in the form

hw, = \/ep2 +[A(cop)Z(wp)]2 . 4)

To obtain (3) an angular average over the momentum transfer q, due to
the electron-phonon interaction, which is proportional to the coupling
constant g_;, has been performed. It is reasonable to assume that this
angular average can be carried out for the small particle as much as it can
for the metal in bulk, since the interactions are of short range.

In these equations the phonon spectrum is described by the spectral
weight function Bl.( q, v), where i indicates the bare phonon modes. This
function will certainly be altered by the existence of the particle surface
but, as we have already mentioned, we shall not take this effect into
account. In case we did, the integration over the phonon frequencies v in
Eq. (3) should also be converted into a discrete sum.
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The kernel Jc appearing in Eliashberg equations is due to the screened
Coulomb potential V(|q|) and is given by

Jw, wp) = = J a2, V(q) tanh(Bhes, /2) (5)

where B = (kT)™!, k being Boltzmann’s constant and T the temperature.
In all these expressions the contribution from thermal phonons has been
neglected, an approximation which is as good at low temperatures for
small particles as it is for the solid in bulk.

We now perform the discrete sum over p in two steps. The sum over
the angular part of p is done in much the same way as in the bulk [3],
but the sum over the absolute value of p, or over the single electron
energies € _, is affected by the discreteness of the spectrum, so we ex-
plicitly retain it. The appropriate coupled equations for a small particle
then become

2[1 — Z(w)hw =

= dvA(v) 1 1
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and
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where

759) 2rg
Av) = N(0) }:J o fo ‘g", 8,2B(q,v) . (8)
i F

Here V, is the Coulomb pseudo-potential [3] and M(0) is the single-elec-
tron density of states evaluated at the Fermi energy. For a small particle
of volume v and a spectrum with mean-level spacing D, we have

D = 1/N(O)y . )

We shall now, following McMillan [4], obtain an approximate solution
to Egs. (6) and (7). This will allow us to show where the main differences
between the solutions for a small particle and those for the metal in bulk
come from. A trial function A(w) is introduced, such that for a phonon
cutoff frecuency w,

(10)

Taking into account that fl—w_) = 1 and f(wp) >~ 0 when w = w,,
the gap equation (7) becomes

_ _)\__ _ 7\(0))52 _
2008, = 105, | 5767 Vc] + A,,[—————-N(O) VcS3] (11a)

Z(o)A, = —V,[A0S; +A.S3] , (11b)

where the strong-coupling constant A is as usual

I
)\_zjo‘ VA(V) (12)

and {(w) is an average phonon frequency [4].

The influence of the discreteness and of the fluctuations of the electron
spectrum is contained in fhe renormalization function Z(w) and in the
summations
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SU(T) = % 2 (hew,)™! tanh(Bhew,/2) (13a)
prl < wp
SoT) =% X (hwy)7? | (13b)
prl > Wy
and
S:(T) = 3 Z (he, )" tanh(Bhe, 2) (130)
lwyl > w,

Regarding Z(w), McMillan obtains for the bulk limit the values Z, (0)
= 1+ X and Zb( o) = 1. For a small particle, on the other hand, we can
write from Eq. (6)

- = dv flwp)
Z(O) =1+ [N(O)] ll lzi 7 A(V) m
wp w, Y0

(14)

and the second term does not reduce to A. Nevertheless we can obtain a
good approximation for this term in the form A (4 ), where the phonon
average of A over n phonon frecuencies is

(A>=‘_l“—_<‘l‘)i ZII — (15)
26oN(0) \n/ 24 2 () — v

where the primes indicate that the variables are given in units of w,. We
also find that Z(ee) = 1 just as in the bulk limit.

We can obtain numerical values for Z(w) and S, in the simplest possible
case: when T = T the transition temperature from the normal to the
superconducting state Then hw. = ep and Eqgs. (11a) and (11b) reduce
to a system of two linear homogeneous equations in A, and A_. A non-
trivial solution is obtained only if the following condltlon onT, is satlsfxed

DS,
1 =m[>\—u—->\u(w)DSz] s (16)
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where
w= V.1 +V,S;) . (17)

We consider two discrete spectra with constant mean-level spacing D
and different fluctuation properties: an equally spaced spectrum (ES) and
a completely random spectrum (P), for which the spacing distribution is
a Poisson distribution [2]. For convenience we measure D in units of T, .

For an ES spectrum we find numerically that

A® =14+D (18)

and that S, and S; equal their bulk limits DS, = DS; = 1.On the other
hand, DS®S varies with D in the form

1.134(1 +D/2)hwo]
. (19)

ES _
DS = ln[ T

This leads to a generalization of the well-known formula of McMillan for
the transition temperature,

TES (D)
BUL
TBULK

= (1 +D/2) exp [-A\D/(X — u — Aulw))] (20)

Things are a bit more complicated for a completely random spectrum.
Now

(A = 1+3D/2 (21

and S, changes with D as indicated in Fig. 1. As in the equally-spaced
spectrum, S, and S take their bulk values.

For the Poisson case it is not possible to obtain a closed expression for
Tc such as (20), but Eq. (16) must be solved using a numerical simulation.
We have recently done this [2] and compared the resulting values with
experimental points for different materials, i.e. different values of the
strong-coupling constant A. The comparison between theory and experi-
ment indicates that a Poisson spectrum seems to be more realistic for a
small particle, contrary to what is sometimes stated in the literature [5]
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Figure 1 Values of DS, (T¢) as a function of D/hw, for an equally spaced spectrum (ES) and for

u:-h_kﬂt\)r—-

an ensemble of 100 completely random spectra (P).
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