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In this paper, finite size and electronic spectrum fluctuations effects in small par-
ticles are analyzed. We give qualitative arguments concerning the nature of these
fluctuations. Theoretical calculations as well as their comparison with available expe-
rimental results for several properties of small systems are described. Finally, we com-
ment on some open problems in this field.

I. CHARACTERISTICS OF SMALL PARTICLES

The simplest model used to describe the behaviour of electrons in me-
tals is of course the free-electron model. The electrons are assumed to mo-
ve without interacting with one another and in a jellium of positive charge,
so as to insure overall charge neutrality. The electrons occupy their ener-
gy eigenstates € according to the Fermi distribution n(e). As the tempera-
ture T tends to zero, n(€) becomes a step function, which is equal to one
fore < e, the Fermi energy, and zero otherwise. For 7 # 0 there isa
band of states, whose width is of the order of &, 7, around the Fermi
energy, for which n(e) is neither zero nor one; here kg is Boltzmann’s
constant.

With this simple model at hand one can obtain a host of electron pro-
perties in metals at low temperatures. For example, when the free elec-
tron gas is in contact with a heat reservoir at temperature 7 only those
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electrons in an energy band of width k, 7 arround e_ can be excited,
since all other excitations are quenched by the Pauli principle. The inter-
nal energy is then proportional to 72 and consequently the specific heat
at constant volume C, is linear in T. In a similar fashion, one can see that
the magnetic suceptibility x will be independent of T for this case. The
argument goes as follows: ‘non-interacting particles with a permanent
magnetic moment u will show a Curie type law in which x ~ T7!.Since
only kg T electrons can be excited when the system is at a low tempera-
ture T, we have that x is a constant, which is known as the Pauli spin
susceptibility.

What happens when the size of the metal is very small, becoming a par-
ticle of a typical length L which is of the order of 100 A, say? For such a
small size, the electron eigenstates do not any longer form a continuum

" but rather a discrete spectrum. The mean spacing D between these levels,
which varies as L~3, represents then a characteristic energy for the small
system.! Whenever the relevant energies in a given phenomenon are of the
order of D, differences between the small particle and the bulk material
might show up [1]. If, for example, the absorption of light with frequency
w by a small particle is analyzed, anomalous behaviour might be observed
whenever

ho <D . (1.1)
For L ~ 100 A, this implies that absorption of light in the far infrared
regime by small particles might differ from that of the bulk material [2, 3].
Similarly, superconductive properties of small systems will change when

kgT, ~D (1.2)

where T is the transition temperature from the normal to the supercon-
ducting state. More generally, at low enough temperatures such that

keT < D (1.3)

)

the thermodynamic properties of small particles and those of the metal in
bulk differ. o

But the thermodynamics of small particles will differ from the bulk me-
tal for other reasons as well. If L ~ 100 A, the energy required to extract
an electron from the particle will be of the order of 0.1 eV, since this

1. When L = 100 A, for example,D ~ 107* eVor 1 K.
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ionization requires an energy proportional to e? /L due to Coulomb attrac-
tion. If condition (1.3) holds, there will be no ionization and the number
of electrons within one particle remains constant. This means that the
most appropriate thermodynamic ensemble to be used might be the cano-
nical ensemble [1]. Furthermore, frequently appearing quantities such as
n(e) will also show corrections with respect to their bulk values, which
will be dependent on the number of electrons in each particle [3]. Let us
see, for instance, how this affects the behaviour of C, and x with T at low
temperatures for a single small particle.

Consider the specific heat first. At very low T, the number ot excited
electrons on the level inmediately above the Fermi energy e will be one
or two, depending if the total number of electrons is odd or even. For
both even and odd small particles C, behaves as

exp [-(er , 1 - € )/kgT] (1.4)

at low T, which is radically different from the linear behaviour observed
for the metal in bulk. The same argument shows that x is proportional to

T exp[-(er 11 - €¢)/kgT] (1.5)

for a particle with an even number of electrons, and proportional to T!
when this number is odd. Both differ from the Pauli spin susceptibility.

The fact that the small system behaviour deviates from that of infinite
systems, due to the discreteness of its electronic spectrum, is known as
the quantum size effect. Once this effect is recognized, other characteris-
tics of discrete spectra must be included as well. In particular, spectrum
fluctuations of the type encountered in the highly-excited regions of nu-
clear spectra, might prove of importance. Since experiments are perfor-
med on many (~ 10'%) particles and not on a single one, the anomalous
behaviour of an assembly of small particles might depend not only on D
but also on such statistical properties of the spectrum as level spacing
distributions.

Both aspects, the quantum size effect and the electronic spectrum fluc-
tuations, are the subject matter of this review. In section Il we show the
dependence on D of different observable quantities, such as C, and x for
normal small particles and the transition temperature 7, for small super-
conducting particles. In other terms, we shall compare the predicted beha-
viour of those quantities in terms of D, in two extreme situations: in the
bulk when D = 0, and for an equally spaced spectrum (ES) for which
there are no level fluctuations, the energies being €, = RD, with k an:
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integer. In section Il we give qualitative arguments and numerical evi-
dence concerning the nature of spectrum fluctuations [4, 5]. In section

- IV we calculate C, and ‘Tc when two kinds of fluctuations are considered,

one corresponding to a completely random spectrum and another to the
Gaussian Orthogonal Ensemble (GOE) of the random matrix theory [6].
We then compare the theoretical results with available experimental data.
Finally, in section V we discuss some open problems in the field. Among
these, the influence of a fixed number of electrons in each particle and
possible differences between a canonical and grand canonical description
stand out. These will be particularly important to understand the electro-
nic magnetic susceptibility of normal small particles, in which case parti-
cles with odd and even number of electrons behave so differently [7, 8].

Il. THE QUANTUM SIZE EFFECT

When one is dealing with a problem which has already been tackled in
the bulk limit and for which a theoretical formulation exists, there comes
a point at which one has to perform integrations, which are obtained as
limits of summations over energy eigenstates (or the like). These energies
are assumed to form a continuum described by a given level density p(e).
It is precisely at this point that the quantum size effect comes into the
theoretical description: one should not proceed to the limit D - 0, but
rather conserve the discrete sums and perform them directly. This implies,
unfortunately, that almost no analytical results can be obtained, since the
sums have to be evaluated numerically. Futhermore, in some cases the for-
mulation for the bulk material has only been done in the framework of
the grand canonical ensemble. This could lead to corrections for very
small particles. Let us see how this technique works out in some particular
examples, first for a normal metal and then for a superconductor.

1.1 Specific heat and magnetic susceptibility

Since the spectrum is discrete for finite systems, the number of possible
excited states is smaller than for the bulk. Therefore, as the system gets
smaller and D grows, the corresponding value of C, at a given T will be
smaller than that of the bulk, for which C, ~ T at low temperatures.
This is shown in Fig. 1 for particles of different sizes with equally-spaced
electronic spectra [6, 81; the values of C, for particles of even and odd
number of electrons have been averaged. Here the canonical ensemble has
been used.

The magnetic susceptibility x behaves differently with temperature if
the number of electrons is even or odd. In the latter case, due to the
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Figure 1 The quantity C, = C,D/[2kgp(€), where C, is the specific heat at constant volume in
units of kg, is shown for the metal in bulk (D=0) and for two different finite values of D.

presence of an unpaired electron, a Curie type law x ~ T7! is obtained if
the spectrum is discrete. The 7~! dependence of x was found experimen-
tally when no effort to distinguish particles with odd or even number of
electrons was made. This has then been interpreted as conclusive evidence
that the quantum size effect exists [9].

For particles with an even number of electrons. the discreteness of the
spectrum affects considerably the resulting x at very low values of T, as
the calculations of Denton et a/. have shown [8]. The resulting values
of x as a function of k, T are given in Fig. 2 for two values of D.

The curves in Fig. 1 were obtained using the free-electron picture,
which according to Shiba [7] lacks an essential ingredient: a spin-orbit
term, which can flip the electron spins. He obtains x (T) for an ES spec-
trum, with the Hamiltonian :

HSh = %ek Cl:s Gs t kzl:e' (Vso)kk' © Oy G Ge's' ’ (2'1)

’

SS

08t D/ky=5K
o D/kg=10K
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Figure 2 Paramagnetic susceptibility measured in units of the Pauli spin susceptibility xp =
3u® (€F)/2 as a function of T for two values of D,
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where c;; and ¢, are electron creation and annihilation operators and o
are the Pauli matrices. Shiba’s results are shown in Fig. 3, where one can
now observe that x is different from zero as T — 0, when V, ¥ 0. We
should remark here that the grand canonical ensemble has been used by
Shiba in his calculation and therefore the constancy of the number of
electrons in each particle has not been taken into account.

1.2 Critical temperature for small superconducting particles

We now discuss the transition temperature from superconducting to
normal state for a small particle as a function of D for both weak and
strong-coupling superconductors. The dynamical description is essentially
the same as for the bulk material, except that the discreteness of the elec-
tron spectrum has been explicitly taken into account. Furthermore, ther-
mal averages have been performed using the grand canonical ensemble,
just as in the calculation by Shiba mentioned above. This allows us to ma-
ke use- of Eliashberg’s scheme [10] for dealing with the electron-phonon
interaction.

Assume you are given a weak-coupling superconductor, for which a
BCS description is reasonable. Under the usual BCS assumptions [11], the
energy gap A (which is taken as independent of k) is obtained from the fo-
llowing equation:

1 =9 Y (1/E) tanh (E[2kgT) (2.2)
kp | < o

where E,, the quasi-particle energy, is given by

(2.3)

T (K)

Figure 3 Electronic susceptibility measured in units of xp for the Hamiltonian (2.1) as a function
of 7. The parameter p of reference 7 equals 1.
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Here g is the strength of the pairing interaction and hw is a characteristic
phonon frequency. We can obtain some interesting results solving Eq.
(2.2). First, take T = 0 and solve for the gap parameter at zero tempera-
ture A(0). Or second, assume that 7 = T, for which A = 0 and obtain
the transition temperature as a function of D. Dependence on the size of
the particle will emerge from differences between the summation over
energy states in (2.2) and the corresponding integral

hw

1 = 9/2 ] p(e) tanh (E/sz T).d(:' , (2'4)
E
0

where p(€) is the density of states.
For the transition temperature, for example, we obtain numerically
that in therange D < 0.1

kg T, = kg T2 (14 D/2hw) . (2.5)

where

ke T, = 113 how expl-1/gp(e)] (2.6)

which is the well known BCS result. A similar result is obtained for
A(0), which also grows with D, as shown in Fig. 8, section IV. On the
other hand, A(T)/A(0) is a universal function of 7/T, independent of D
and of other parameters.

A somewhat similar conclusion is reached if one modifies Eliashberg’s
equations [10] for strong-coupling superconductors to take into account
the quantum size effect [12]. Following McMillan [13], the next condition
for T, can be obtained

e Y, ) T D) {51[0\ u*) )\u*(w)Dsz], , (2.7)

where S, and S, are discrete summations depending implicity on D,
measured in units of hw, (the cut-off phonon frequency):

S, = Z [(1/e,) tanh(e,[2kgT_)] (2.8a)

lepl < huw,
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S, = 2. [/e1 . (2.8b)

legl > hw,

These summations contain most of the deviations from the continuum
case. Here v ~ D1 is the particle volume, X is a constant proportional to
an average electron-phonon coupling, u* is due to the electron-electron
Coulomb potential and (w) is an average phonon frequency, where possi-
ble changes in the phonon spectrum with respect to the bulk limit have
not been taken into account.

Two limiting cases are of interest here. When we deal with a weak-cou-
pling superconductor, A — p* is small and then Eq. (2.7) reduces to the
BCS condition for T, extracted from Eq. (2.2). On the other hand, when
D - 0 Eg. (2.7) reduces to that obtained by McMillan [13] for the bulk
material.

For an ES spectrum one obtains readily from (2.7) that

T. = T2 (1+D/2) exp —[\Dv(A— p* — N¥))]  (29)

which shows that T, can be smaller as D grows when X corresponds to a
strong-coupling superconductor.

As we have already mentioned, the grand canonical ensemble has been
used throughout these calculations. An effort to project to the canonical
ensemble has been made by Miihischlegel et a/. [14] for a BCS model Ha-
miltonian using the functional averaging method. It remains an open
problem to include the constancy of the number of electrons in each small
superconducting particle for the strong-coupling case. However, when
D//eB T. is small, we expect the corrections with respect to our results
to be extremely small.

We shall now turn our attention to the effect of spectrum fluctuations
on some observable properties of small particles. To start with, let us
consider in some detail the spectrum fluctuations by themselves.

111, THE NATURE OF ELECTRONIC SPECTRUM FLUCTUATIONS

Since spectrum fluctuations are of an intrinsic statistical nature, we in-
troduce an ensemble of small particles to describe them. This corresponds
to actual experimental conditions, since experiments are always performed
using not only one small particle, but a very large set (~ 10'4) of them.
Furthermore, it is extremely difficult to produce experimentally two iden-
tical small particles and therefore, each one will have a slightly different
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electronic spectrum. Once the ensemble of spectra with a mean spacing D
(corresponding to mean volume v) and with the desired fluctuation pro-
perties is defined, the properties of a powder of small particles are obtai-
ned via an ensemble average. Let us now discuss what kind of spectrum
fluctuations we can expect.

In a small particle the electron energy levels €, will be influenced by
the particle’s surface. In the simplest possible approach, that of the free-
electron model, the €, are obtained after solving Schrédinger’s equation

h2V2
[2m +ek] Ye(r) = 0 (3.1)

with the condition
Y. (r) =0 (3.2)

when r is a point at the surface. This follows from the fact that electrons
should not leave the particle.

When the powder of small particles is produced, we can not have a di-
rect control over the surface irregularities, for example, there could be
defects at the surface. This will destroy any systematic behaviour in the
electron spectrum and some randomness might appear. In 1962, Kubo [1]
assumed that the spectrum is completely random and, in 1965, Gor’kov
and Eliashberg (GE) [2] argued that surface irregularities would induce
random interactions between the energy eigenstates; they introduced a
random-matrix description of the electron spectrum, similar to that consi-
dered in nuclear physics to deal with slow-neutron resonances [15]. Since
the work of GE, random matrices have been thought to be a suitable des-
cription for electron levels in small particles. We have given recently evi-
dence against this belief.

In a completely random spectrum, the nearest-neighbour spacing distri-
bution p(s/D) (which equals the probability of having a level at €, +s if
there is another level at €, with no levels in between) is equal to a Poisson
distribution

pp(s/D) = e /P ” (3.3)

Random matrix ensembles, on the other hand, produce spectra with
correlated levels [15]. The type of correlation, and therefore of spacing
distribution, depends on the precise definition of the ensemble. We shall
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here restrict ourselves to what is called the Gaussian Orthogonal Ensemble
(GOE), in which the matrix elements are independent Gaussian random
numbers. In this case, the nearest-neighbour distribution is closely appro-
ximated by Wigner’s formula [15]

B 0600 = 3 (5) exo - (277] (.4

which shows what is known as “level repulsion”, i. e. p (0) = 0, so the
probability of having two closely lying levels vanishes.

As we intended to make clear above, both Kubo and GE based their
assumptions on the same argument, which is clearly of a qualitative natu-
re. Since spectrum fluctuations are such a basic ingredient for the theory
of electrons in small particles, it is clear that a close analysis of these
assumptions is worthwhile. We have done precisely that in the last few
years, both from the theoretical standpoint [4, 5, 6] as well as from com-
parisorr with available experimental data (see section 1V).

Although the situation is not completely cleared up, present evidence
indicates that a completely random spectrum provides a better description
of most available data.

1.1 Qualitative arguments

As we have already mentioned, Gor‘kov and Eliashberg claim a simila-
rity between the small metallic particle problem and that of the nuclear
spectrum at high excitations. It is useful here to quote from Mehta’s book
on random matrices [16]. According to Mehta, one can justify the use of
random matrices in small particles in the following way:

The electronic energies are the eigenvalues of a fixed Hamiltonian but
with random boundary conditions that can be incorporated into a random
matrix through the use of fictitious potentials. The ensemble of random
matrices to be used depends on the particular conditions of the powder:
i) if the number of electrons is even and there is no magnetic field the
orthogonal ensemble is applicable since time reversal holds; ii) when the
number of electrons is odd and no magnetic field is present the symplectic
ensemble applies, and iii) when there is a magnetic field H, the Hamilto-
nian is no longer invariant under time reversal, and the ensemble of ran-
dom matrices should be of the unitary type if uH >> D, where u is the
electron magnetic moment.

Here we find the first conceptual difficulty, which has to do with the
difference in description for a particle with an even or an odd number of
electrons. Since the surface is so irregular, the problem will not show
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spherical symmetry and, therefore, GOE will only be appropriate to small
particles with an even number of electrons, the odd particles being descri-
bed by the symplectic ensemble. But this clearly is an awkward situation,
particularly so if one thinks of building the particle atom by atom, to the
point of having 104 or so atoms. No reasonable description, using the me-
thods of molecular physics, would lead to such a big difference between
particles with even or odd number of atoms.

A second problem appears if we recall what is done in the nuclear
case in order to compare random matrix predictions with experimental
results. These latter are obtained from slow-neutron experiments, in which
care is taken to include only s-waveresonances [17]. Then one is sure that
only states with total angular momentum J = 1/2 are included when
bombarding an even nucleus in its ground state. Resonances corresponding
to p-wave scattering are carefully avoided. As a matter of fact, a host of
statistical tests have been developed to detect these “intruder’’ states and
to eliminate them from consideration. In other words, random matrix
results are compared only with corresponding properties of pure sequen-
ces of states, all having the same good quantum numbers. If many of the-
se pure sequences are mixed at random, it is known that a completely ran-
dom spectrum will evolve [18].

But in dealing with the thermal properties of small metallic particles no
such care is possible. We do not have any control as to which excited
states are seen. The situation would be similar as if we had neutron scat-
tering in many partial waves and we had no way of detecting how impure
the sequence of observed neutron resonances is. This argument points in
favor of a completely random spectrum.

A somewhat more formal argument goes back to the question of repre-
senting the effect of a random surface in terms of matrices, as suggested
by Mehta. For this we have to compute the matrix elements on a single-
electron wave function basis. Referring to Eq. (3.1), what we need is to
obtain ¥, in terms of an unpertubed set of wave functions ¢, , defined
by the same boundary condition, but on an unperturbed surface S’ as
_indicated in Fig. 4. In order to ensure that Y, be zero on S, so that no
electrons can leave the small particle, we need to introduce a potential
barrier between S and S, which eventually has to be of infinite value.
As ¢, is different from zero in this region, this will demand infinite
matrix elements, and no matrix description of the boundary perturba-
tion is possible.

Tavel et al. [19,20] have however gone around the above argument,
in much the same way the hard core nucleon-nucleon force is dealt with
in nuclear many-body theory: by introducing an effective interaction.
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S

Figure 4 The unperturbed region R’ surrounded by the surface S’ is deformed into a perburbed
region R with surface S.

Their argument goes as follows:

An equivalence is established between the eigenvalue problem for a
simple operator (i.e. the kinetic energy) in a complicated domain (i.e. the
pertubed region R bounded by S) and that of a complicated operator in
the simple domain R'. If one assumes a mapping r - r = r'(r) which is
" one-to-one, has an inverse and maps R into R’ in a continuous fashion,
the Hermitian transformed Hamiltonian is

H'(¥) = J™ () Hir(r')1) () (3.5)

where / is the Jacobian which characterizes the mapping.
For a slightly deformed spherical region, we have?2

r=r,[1+2X En gn (Yam * Yon) ¥ ibom (Yem * Yo )1 (3.6)

where r, is the average radius and X is the parameter that adjusts the
height of the deformation. The eigenvalues of (3.5) can then be obtained
as a power series in A.

Althought the preceeding formalism has all the drawbacks of pertur-
bation theory, it is interesting for our purposes, since some results obtai-
ned with it favor the random matrix approach. As these are numerical re-
sults, we shall discuss them along with some of the numerical evidence
we have obtained; this will be the content of the next subsection.

111.2 Numerical evidence

Using their perturbation theory approach, Tavel et al. [20] have com-
puted directly the nearest-neighbour spacing distribution of the perturbed
energy levels. They use a non perturbed spherical surface and restrict
themselves to study the non-degenerate energy levels arising from a single

2. It seems that direct experimental evidence is now being accumulated which shows that small
metallic particles are not at all spherical, but rather have well defined edges and faces [21].
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unperturbed ¢-state. The question of convergence at different perturbation
orders is analyzed, although no proof of convergence is given. In the case
in which the coefficients a,, and b, ~ of Eq. (3.6), which are taken as
random numbers to simulate the assembly of small particles, all have the
same random distribution, the perturbed eigenvalues (up to first order in
A) are such that a nearest-neighbor spacing distribution of the Wigner type
follows. This is no longer the case when coefficients with larger values
of & are less and less important, and an akward shape for p(s/D) is
obtained.

We have proceeded along different lines. If one uses a different version
of boundary perturbation formalism [22], no convergence is found for
Dirichlet boundary conditions. On the other hand, if the assumption is
made that spacing distributions are not strongly affected by the boundary
conditions, the perturbation series can be obtained for Neumann bounda-
ry conditions and convergence can be proved [4]. However, the resulting
eigenvalues are incorrect for electrons in a two-dimensional rectangular
platelet, as shown in figure 5.

One could actually take the platelet (or the cube) shape seriously and
compute the spacing distributions directly, since in this case the energy
values can be obtained exactly. Using an ensemble of such platelets (or
cubes) a Poisson distribution is obtained. Since this disagrees with Tavel’s
results it would be important to use their approach in this same example
and understand the discrepancy; unfortunately this has not been done up
to now. An important point should be made here. Tavel et a/. obtain

(a (b
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Figure 5 Comparison of the exact eigenvalues and those obtained after diagonilizing the matrix

corresponding to perturbation theory. The perturbed region R is a square of sides 1 and 1-n. Case

(a) corresponds to n = 0.001 and (b) to n = 0.01. A typical electron wavelength in this energy
region is of the order of 0.08.
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p(s/D) along a single spectrum. To compare with our result (or with
experiment, for that case) one has either to assume or to prove that what
is known as ergodicity holds [23]. In the case of the ensemble of platelets
this has been done numerically [4].

We have also computed the spacing distribution of electron energy le-
vels in very small clusters [5]. For two microparticles, one of a rather
arbitrary shape and the other of a very regular structure, we have obtai-
ned p(s/D) from the energy levels computed by other authors, which took
into account electron-electron and electron-nuclei Coulomb interactions.
For both “realistic” calculations a Poisson distribution was obtained, once
an “unfolding” procedure which maps the spectrum into one with cons-
tant level density was performed.

As far as our present knowledge goes this is the status of direct theore-
tical evidence regarding electronic fluctuations in small particles.

We shall now present some of the indirect evidence, in which experi-
mental data are compared with the results of theoretical calculations
based -either of the two types of spectra we have been discussing, the
completely random Poisson case and the GOE spectrum.

IV. EFFECTS OF THE ELECTRONIC SPECTRUM FLUCTUATIONS
IV.1 Specific heat of normal metallic particles

Equilibrium properties, such as the thermodynamics of small particles,
depend strongly on level fluctuations only at very low temperatures. It is
therefore interesting to calculate exactly in this temperature region quan-
tities such as the specific heat of normal metallic particles. This can be
done on the computer by simulating an assembly of particles by their
spectra. To each particle we associate a one-electron spectrum that follows
a given level spacing distribution, either Poisson or GOE. The calculation
proceeds as follows First we calculate the partition function in the ca-
nonical ensemble for A particles.

X
Z

29 exp(—E{7/ks T) (4.1)
a:
with E("‘) and g(“’ the energy and degeneracy of the £th excited state of

one partlcle contalmng n'®) electrons. Second, we obtain the specific
heat ¢, per particle from

€,

- = _;32 (InZ) where B = (kgT)™! . (4.2)
B
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The results for an assembly of 2000 P or GOE spectra are plotted in the
morphologic chart [6] of figure 6. The curves are even-odd averages on
1000 particles of each kind. In the case of GOE spectra this is not correct,
because as stated before, this ensemble applies only for particles with even
number of electrons. In any case, the GOE curve in Fig. 6 must be unders-
tood as characteristic of a system with level repulsion. Indeed, Fig. 6 al-
lows for a comparison between GOE results and those coming from an
uncorrelated Wigner (UW) set of spectra. Both € curves differ very little,
although in the UW spectra part of the correlation contained in a GOE
spectra is lost.

06 GOE / -

0 ] 2
ke T/D

Figure 6 A morphologic chart for the specific heat.

The specific heat for a Poisson ensemble exhibits a linear dependence at
low temperatures both for particles with even and odd number of elec-
trons as seen from figure 7. As expected, the slope is smaller in the odd
case because the number of excitations compatible with a given tempera-
ture is less than in the even case. For Poisson spectra it is therefore possi-
ble to define a Griineissen constant which is smaller than in the bulk.

Unfortunately, the specific heat for normal metallic particles has not
been measured; up to our knowledge, it is known only in one case, that
of superconducting vanadium small particles [24]. Mihlschlegel et a/. [14]
calculated theoretically under certain approximations the behaviour of
€ for superconducting particles. However these authors neglect the va-
riation of 7. with D, which renders their work rather incomplete. This is
one line of work that should be pursued.
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04} il
{

02 r 1/

G/ ky

0 005 0l 015
ke T/D

Figure 7 The specific heat as a function of temperature. Full and empty dots stand for samples of

1000 P spectra with even and odd number of electrons, respectively. The dotted lines correspond

to Kubo's calculationl) and the solid line to Denton et al.8) approximation for the P even-odd
average.

1V. 2 Properties of small superconducting particles

Turning back to the problem stated in section 11.2 we want now to in-
vestigate if spectrum fluctuations can give extra contributions to the va-
riation of A(0) and of the critical temperature with D. We proceed as fo-
llows: a given average spacing D is fixed and an ensemble of spectra with
the desired fluctuation properties is generated numericaly. For each
spectrum, either Eq. (2.2) or (2.7) is solved and an average over the en-

A(0)/hw

O o1 o0z 03 04

D/hw

Figure 8 The gap parameter at 7 = 0 asa function of D for different values of g/D and for dif-
ferent type of spectra.
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Figure 9 Dependence of 7. for a BCS small particle on the mean level spacing D for P, GOE and
ES spectra, the value g/D = 0.3 was used and averages over 200 spectra for the P and GOE cases
was taken. The open data dots correpond to experimental values for AQ (ref. 25).

semble is taken thereafter. Thus we obtain A(0) or T, as a function of D
in BCS theory and 7, in the strong coupling limits. The results are shown
in Figs. 8 and 9 for BCS particles (such as Al) and in Fig. 10 for inter-
mediate and strong coupling materials such as V, In and Pb. From these
figures it is clear that the spectrum fluctuations have a large effect on the
values of A(0) and k, T, effect which has been disregarded up to know.
The dots in Figs. 9 and 10 are experimental data [24, 25] for several small
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Figure 10 Dependence of 7. on D in strong-coupling superconducting small particles for P and ES

spectra. The open dots correspond to experimental values for V(ref. 24), In and Pb (ref. 25). In

(a) A = 0.6 and 300 spectra were used; for (b) A = 0.69 and 500 spectra and in (c)A = 1.12 and

the average over 300 Poisson spectra was taken. In all cases u* = 0.1. (W)hw = 0.5 and hw, was
fitted to give the correct bulk limits. Continuous lines are traced to guide the eyes.



378 BAROJAS, et al.

superconductors. Although no effort whatsoever has been made to fit the
data to the parameters of the theoretical calculation, it certainly looks as
if results based on random spectrum follow the experimental points much
more closely than do the GOE or ES assumptions.

V. FURTHER PROBLEMS

Let us finally comment on those conclusions and open questions which
we feel are the most important when considering electronic spectrum fluc-
tuations in a powder of many small systems.

Throughout our study, except for the analysis in microclusters [5], we
worked under the assumption that in each small particle the electronic
spectrum is free-electron like and that fluctuations on it may arise from
slight changes on the surface of each member of the assembly of ~ 1014
small particles. In section Il we have given qualitative and numerical
evidence favoring a random electronic spectrum (Poisson distribution
law). The matter of which level spectrum distribution is the best, is ne-
vertheless still under controversy. Indeed, the calculation of Tavel
et al. [19,20] based on the introduction of an effective interaction to
represent a perturbed boundary, points to a GOE spectrum. However, the-
se authors assume an assembly of almost spherical particles, which might
not be a realistic assumption [21]. Furthermore, Tavle’s assembly of spec-
tra has not been proved to be ergodic and convergence of their perturba-
tion series has only been analyzed slightly. Evidently, more work along
these lines is necessary, although the discussion would be ended if the
eigenvalues of a system of ~ 10* electrons, were calculated exactly for
slightly different conformations of the ions. Even if this were the case,
the spacing distribution would be a convenient tool to calculate averages
over the assembly of small particles, which could then be compared to
experimental values.

The importance of spectrum fluctuations was illustrated in section v,
which discusses their influence on the specific heat of normal particles
and on the superconducting transition temperature in both weak and
strong-coupling limits. These are just two examples of a broad kind of
problems which can be dealt with. In fact, experimental data are now
beginning to accumulate for several properties and several materials [27].

We think that our calculation of C, is complete and accurate, but then
no experimental values up to now are available for comparison. When
using the morphologic chart of figure 6 we should remark, however, that
the GOE average over even and odd number of electrons is not strictly
valid, because GOE is not applicable for odd particles. We note that C,
is Imear with temperature only for Poisson spectra, implying that these
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statistical fluctuations lead to a thermodynamics of finite but large Fer-
mi systems not too different from that of the bulk.

On the other hand, the calculation of the critical temperature for
superconducting particles is subject to improvement. To start with, we
have not taken into account any changes in the phonon spectrum such
as the addition of surface modes. This will affect, among other things,
the value of the electron-phonon coupling constant A as has been indicated
by Novotny et al. [26] and later on by Matsuo and coworkers [25]. In our
calculation we adapted Eliashberg equations to include the effect of
spectrum fluctuations. These equations are a generalization of Migdal‘s
treatment of the coupled electron-phonon system in normal metals [28],
based on the existence of the small parameter (me/Mion)‘”. This para-
meter is the same in the bulk as in the small particle, because the elec-
tron number density is not changed. However, the number density fluc-
tuations may be different from the bulk, in which case attention should
be focused on which ensemble in statistical mechanics should be used
to relate the thermodynamic functions to the model Hamiltonian of the
many small-particle assembly. In this context, one of the problems that
may arise is the use of the grand canonical ensemble in the definition
of the one-particle thermodynamic Green’s functions in the Nambu
scheme [29]. What we have done to be consistent with this picture, is
to fix a chemical potential as

w= Eo(N+1)— EO(N)«Né

where EO(IV) is the ground state energy of a system with N electrons, N
being the average over the assembly of 10'% particles. In all our calcula-
tions N ~ 10%, so u has a rather constant value. In any case, further wark
along these lines should include the fluctuations of u.

Another and very direct way to study the differences between a grand
canonical and a canonical statistical description of small particles, is to
compute the particle-hole occupation number distribution n(e) in each
particle for both ensembles. Denton et al. [8] have obtained n(e) for an ES
spectrum, without including spectrum fluctuations. Even in this case one
sees that for D < kT the function n(e) resembles closely the Fermi dis-
tribution, in which case a canonical or grand canonical description should
not lead to significant differences.

In the specific heat calculation there was a difference between the va-
lues obtained for even and odd number of particles. In what concerns
the superconducting transition temperature, if the initial mean number of
electrons N is even, and the addition of an odd particle results in the
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appearance of one quasi-particle &, in the ground state of the N + 1 sys-
tem, without modification of the quasi-particle even distribution, then no
differences between odd and even transition temperatures will be ob-
tained [30].

Even and odd values of N certainly matter for the magnetic susceptibi-
lity, for which many experimental results are now available [27]. Unfor-
tunately, the theoretical calculations of x show many deficiencies. The
calculations of Kubo [1] and later on of Denton et al. [8) were done using
the free-electron model without including spin-orbit effects or any other
interactions. On the other hand, Shiba included the spin-orbit effect only
in an average way, furthermore, his calculation was done using a grand-ca-
nonical ensemble and for an ES spectrum. Therefore, the calculation x
in which a reasonable model Hamiltonian is considered and spectrum fluc-
tuations are included remains a completely open problem. A similar situa-
tion occurs for other electromagnetic properties, such as the optical
absorption of small metallic particles.

As we hope to have shown in this paper, the field of electrons in small
particles offers a large number of theoretical open problems, whose solu-
tion will certainly be of importance in many applications.
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RESUMEN*

En este testimonio se analizan los efectos del tamano finito y de las fluctuaciones en el espectro
electrénico de particulas pequeias. Se dan argumentos cualitativos respecto a la naturaleza de estas
fluctuaciones. Se describen cdlculos teéricos, asi como comparaciones con resultados experimenta-
les disponibles, para distintas propiedades de sistemas pequefios. Finalmente se comenta sobre algu-
nos problemas abiertos en este campo.

* Traducido del inglés por la Redaccion.



