Supporting Information

Distinctive Formation of PEG-Lipid Nanopatches onto Solid Polymer Surfaces Interfacing Solvents from Atomistic Simulation

James Andrews and Estela Blaisten-Barojas*

Center for Simulation and Modeling (formerly, Computational Materials Science Center) and Department of Computational and Data Sciences, George Mason University, Fairfax, Virginia 22030, Unites States

E-mail: blaisten@gmu.edu

S1 The DSPE-PEG Macromolecule

The block copolymer DSPE-PEG(2000), 1, 2-Distearoyl-sn-glycero-3-phosphoethanolaminepoly(ethylene glycol)₄₅ amine is shown in Fig. S1.

 $\label{eq:Figure S1: Illustration of the DSPE-PEG macromolecule. (a) Chemical representation, from https://avantilipids.com/product/880128; the PEG component has molecular weight 2000 u. (b) Rendering of the DFT-optimized structure. \\$

This macromolecule was modeled with the GAFF force field for which the RESP atomic charges were calculated and are shown in Table S1. The atomic charges correspond to the DSPE-PEG structure depicted in Fig. S1b. Figure S2 shows the atomic charges values across the length of the macromolecule.

Figure S2: Atomic charges of the DSPE-PEG macromolecule summed over each PEG monomer, in full detail around the phosphorus atom (insert), and every two backbone carbons of each DSPE acyl chain.

S2 Energetics of the PLGA Solid Slab Interfacing Solutions with DSPE-PEG solute

The MD simulations of DSPE-PEG droplet formed on the PLGA surface were 100 ns long and 200 ns long in cases containing EA. These simulations allowed for the collection of significant statistical data showing how the macromolecules composing the droplet accommodate while anchored on the PLGA surface. Figure S3 shows the potential energy of the full PLGA+solvent+DSPE-PEG droplet along the last half of the full NVT trajectory for the three solvents considered in this work. Figure S4(a) shows the interaction energy of the

Figure S3: Total potential energy of the ternary systems PLGA+solvent+DSPE-PEG droplet along the NVT simulation at 300 K and at the corresponding equilibrated volume from previous Parrinello-Rahman NPT runs at 300 K and 101.325 kPa. (a) Solvent is water, with depicted last 50 ns of the 100 ns trajectory; (b) solvent is ethyl acetate, with depicted last 100 ns of a 200 ns trajectory; (c) solvent is ethyl acetate:water mixture along the full 200 ns trajectory.

DSPE-PEG droplet with the PLGA solid block split per contribution of the PEG portion

and the DSPE portion of the copolymer. Figure S4(b) shows the interaction energy of the DSPE-PEG droplet with the solvent split per contribution of the PEG portion and the DSPE portion of the lipid copolymer.

Figure S4: (a) DSPE-PEG droplet interaction energy with the PLGA solid split per contribution of the PEG and DSPE portions of the polymer; (b) DSPE-PEG droplet interaction energy with the solvent split per contribution of the PEG and DSPE portions of the polymer.

When analyzing the characteristics of the DSPE-PEG droplet formation, the hight of each atom within the droplet with respect to the PLGA surface was evaluated. Figure S5 has histograms of the distribution of heights with respect to the surface of all the atoms in either the PEG or DSPE portions of the droplets. For visualization purposes, an idealized enveloping hemispherical cap was proposed to identify the wetting contact angle of the formed DSPE-PEG droplets on the PLGA surface. Figure S6 (left) depicts the idealized enveloping sphere cap. Two possible definitions of the contact angle are either θ_a the angle

Figure S5: Distribution of DSPE and PEG atom heights with respect to the PLGA surface in the DSPE-PEG droplets formed within water (top), EA (middle), and mixed solvent (bottom). Left panels are stacked histograms where magenta is PEG and gold is DSPE; their sum represents the full droplet. Right panels are the corresponding percent distributions of DSPE and of PEG atomic heights within the droplet.

between the cup radius and the secant reaching the cup apex, or θ_b the angle between the sphere tangent with the horizontal axis along the surface, as illustrated in Fig. S6 (right).

Figure S6: Diagram visualizing the variables leading to the wetting contact angle of an idealized spherical envelope of the DSPE-PEG droplet on the PLGA solid surface. AB is the radius r of the circle fitting the droplet footprint depicted in the main paper Fig. 6. ABC and ABD are two possible definitions of the wetting contact angle termed β_a and β_b , respectively.

S3 Table of the DSPE-PEG Macromolecule Atomic Charges.

Table S1: Atom number, type, name, and charge (e) for atoms belonging to the DSPE-PEG-amine macromolecule.

No.	Type	Name	Charge	N	o. Type	Name	Charge
1	cA	C1	0.20796600	3	9 hL	H37	0.00721200
2	cA	C2	0.16302000	4) hL	H38	0.00721200
3	$^{\rm oS}$	O1	-0.47568600	4	l hL	H35	-0.00709700
4	pА	P1	1.03785700	42	2 hL	H36	-0.00709700
5	oH	O2	-0.58357900	43	3 hL	H33	0.000938
6	hO	H5	0.42166800	44	4 hL	H34	0.000938
7	$^{\rm oC}$	O3	-0.56570700	4	5 hL	H31	0.002241
8	$^{\rm oS}$	O4	-0.43536100	4	5 hL	H32	0.002241
9	cA	C3	-0.00840100	4'	7 hL	H29	-0.000573
10	cA	C4	0.34160000	44	8 hL	H30	-0.000573
11	cA	C5	-0.00689800	4	9 hL	H27	-0.001399
12	$^{\rm oS}$	O6	-0.39504400	50) hL	H28	-0.001399
13	cC	C6	0.70645200	5	1 hL	H25	0.002453
14	$^{\rm oC}$	07	-0.53564800	55	$2 ext{hL}$	H26	0.002453
15	$^{\rm cD}$	C8	-0.30087000	53	3 hL	H23	0.001453
16	$^{\rm cD}$	C9	0.00797900	54	4 hL	H24	0.001453
17	$^{\rm cD}$	C10	0.04293000	5	5 hL	H21	-0.000445
18	$^{\rm cD}$	C11	-0.01950700	50	5 hL	H22	-0.000445
19	$^{\rm cD}$	C12	-0.00606800	5'	7 hL	H19	0.001564
20	$^{\rm cD}$	C13	0.01107300	58	8 hL	H20	0.001564
21	$^{\rm cD}$	C14	-0.00401600	5	9 hL	H17	0.005030
22	$^{\rm cD}$	C15	-0.01097500	6) hL	H18	0.005030
23	$^{\rm cD}$	C16	0.00940700	6	1 hL	H15	-0.003753
24	$^{\rm cD}$	C17	0.00327300	61	2 hL	H16	-0.003753
25	$^{\rm cD}$	C18	-0.01351400	6	3 hL	H13	0.017335
26	$^{\rm cD}$	C19	0.00145000	64	$4 ext{hL}$	H14	0.017335
27	$^{\rm cD}$	C20	0.03604600	6	5 hL	H11	0.100012
28	$^{\rm cD}$	C21	-0.05057500	6	5 hL	H12	0.100012
29	$^{\rm cD}$	C22	-0.01992800	6	7 hE	H9	0.088537
30	$^{\rm cD}$	C23	0.12438000	68	8 hE	H10	0.088537
31	$^{\rm cD}$	C24	-0.23752800	69	9 oS	O5	-0.522604
32	hL	H43	0.05122600	70) cC	C7	0.728247
33	hL	H44	0.05122600	7	1 oC	08	-0.524813
34	hL	H45	0.05122600	71	2 cD	C25	-0.215636
35	hL	H41	-0.01647100	7:	3 cD	C26	0.172788
36	hL	H42	-0.01647100	74	4 cD	C27	-0.047623
37	hL	H39	0.00988200	7	5 cD	C28	-0.078516
38	hL	H40	0.00988200	70	6 cD	C29	0.087991

No.	Type	Name	Charge	No.	Type	Name	Charge
77	$^{\rm cD}$	C30	-0.008889	133	с	C42	0.894354
78	$^{\rm cD}$	C31	-0.018980	134	0	O10	-0.602550
79	$^{\rm cD}$	C32	0.007940	135	os	O9	-0.524511
80	$^{\rm cD}$	C33	0.013919	136	c3	C43	0.246681
81	$^{\rm cD}$	C34	-0.007079	137	h1	H82	-0.085219
82	cD	C35	-0.006007	138	h1	H83	-0.085219
83	cD	C36	0.004834	139	c3	C44	0.158824
84	cD	C37	0.034997	140	h1	H84	-0.033100
85	cD	C38	-0.050163	141	h1	H85	-0.033100
86	cD	C39	-0.015145	142	05	02	-0.410000
87	cD	C40	0.121912	143	c3	C3	0.021600
88	cD	C41	-0.233669	144	h1	H6	0.096600
89	hL	H78	0.050410	145	h1	H7	0.096600
90	hL	H79	0.050410	146	c3	C4	0.142660
91	hL	H80	0.050410	140	h1	H8	0.111500
92	hL	H76	-0.016498	148	h1	HQ	0.111500
03	hL	H77	-0.016498	140	08	03	-0.190512
04	hI	H74	0.008730	143	03	C5	0.001530
94 05	hI	1174 U75	0.008730	150	60 h1	U3 U10	-0.001330
95	hI	1170 1170	0.006730	151	111 h1	ПП П11	0.050150
90	LIL LI	1172	0.000071	152			0.050150
97		П7Э Ц7О	0.000071	105	CO 1.1	U0 1110	0.157500
98	nL LT	H70 1171	-0.007408	154	n1 1.1	H12 1112	0.017600
99 100	nL LT		-0.007408	155	nı	H13	0.017600
100	nL	H68	-0.000163	150	os	04	-0.400000
101	nL	H69	-0.000163	157	C3	07	0.222579
102	hL	H66	0.000435	158	hl	H14	0.003450
103	hL	H67	0.000435	159	hl	H15	0.003450
104	hL	H64	0.000249	160	c3	C8	0.135370
105	hL	H65	0.000249	161	hl	H16	0.012440
106	hL	H62	-0.001802	162	hl	H17	0.012440
107	hL	H63	-0.001802	163	os	O5	-0.361000
108	hL	H60	-0.001790	164	c3	C9	-0.014461
109	hL	H61	-0.001790	165	h1	H18	0.100600
110	hL	H58	0.001976	166	h1	H19	0.100600
111	hL	H59	0.001976	167	c3	C10	0.139290
112	hL	H56	0.002634	168	h1	H20	0.039650
113	hL	H57	0.002634	169	h1	H21	0.039650
114	hL	H54	-0.016503	170	os	O6	-0.400000
115	hL	H55	-0.016503	171	c3	C11	0.065690
116	hL	H52	0.010216	172	h1	H22	0.058570
117	hL	H53	0.010216	173	h1	H23	0.058570
118	hL	H50	0.019149	174	c3	C12	0.045980
119	hL	H51	0.019149	175	h1	H24	0.052910
120	hL	H48	-0.029435	176	h1	H25	0.052910
121	hL	H49	-0.029435	177	os	07	-0.280000
122	hL	H46	0.051454	178	c3	C13	-0.081739
123	hL	H47	0.051454	179	h1	H26	0.071700
124	hE	H8	0.047916	180	h1	H27	0.071700
125	hE	H6	0.107804	181	c3	C14	0.249790
126	hE	H7	0.107804	182	h1	H28	0.028560
127	hE	H1	0.047804	183	h1	H29	0.028560
128	hE	H2	0.047804	184	os	08	-0.440000
129	hX	H3	0.044779	185	c3	C15	0.262235
130	hX	H4	0.044779	186	h1	H30	0.000880
131	nA	N1	-0.698150	187	h1	H31	0.000880
132	hN	H81	0.314190	188	c3	C16	0.012200
		~ -		100			

No.	Type	Name	Charge	No	Type	Name	Charge
189	h1	H32	0.058570	256	h1	H70	0.007690
190	h1	H33	0.058570	257	′ h1	H71	0.007690
191	os	09	-0.412400	258	c3	C36	-0.009025
192	c3	C17	0.193110	259	h l	H72	0.050100
193	h1	H34	0.026370	260	hl	H73	0.050100
194	n1	H35 C19	0.026370	201	OS of	019 C27	-0.290000
195	C3 b1	U18 U26	0.107400	202	C3	U37 U74	0.101100
190	111 h1	1150 1197	0.025970	203	h1	1174 1175	0.047070
197	00	Ω_{10}	0.023970	204		C38	0.047070
190	c3	C19	0.120190	200	h1	H76	0.040490
200	h1	H38	0.120130	200	/ 111 / h1	H77	0.091000
200	h1	H39	0.042280 0.042280	268	05	020	-0.342100
201	c3	C20	0.068800	260	c3	C39	0 117400
202	h1	H40	0.045590	270	h1	H78	0.026750
204	h1	H41	0.045590	271	h1	H79	0.026750
205	os	011	-0.360000	272	c3	C40	0.208000
206	c3	C21	0.053000	273	h1	H80	0.000400
207	h1	H42	0.058800	274	h1	H81	0.000400
208	h1	H43	0.058800	275	os	O21	-0.402000
209	c3	C22	0.011060	276	c3	C41	0.087700
210	h1	H44	0.084270	277	′ h1	H82	0.031700
211	h1	H45	0.084270	278	h1	H83	0.031700
212	os	O12	-0.370000	279	c3	C42	0.135700
213	c3	C23	0.077300	280	h1	H84	0.018190
214	h1	H46	0.060800	281	h1	H85	0.018190
215	h1	H47	0.060800	282	os	O22	-0.310300
216	c3	C24	0.330000	283	c3	C43	-0.011060
217	h1	H48	-0.029140	284	h1	H86	0.120200
218	h1	H49	-0.029140	285	h1	H87	0.120200
219	os	O13	-0.466633	286	c3	C44	-0.111540
220	c3	C25	0.240000	287	′ h1	H88	0.125300
221	h1	H50	-0.011644	288	h1	H89	0.125300
222	h1	H51	-0.011644	289	os	O23	-0.307000
223	c3	C26	0.085420	290	c3	C45	-0.128600
224	hl	H52	0.041690	291	hl	H90	0.131700
225	hl	H53	0.041690	292		H91	0.131700
226	OS - 2	C07	-0.380300	293	C3	U46	-0.128600
221	C3 1.1		0.100550	294	- 11 - 11	H92	0.131700
220	111 h1	П04 Ц55	0.014000	290		П95 О24	0.131700
229	02	C28	0.014000	290		024 C47	-0.307000
230	63 h1	U28 H56	0.080800	291	- C5 - h1	U47 H04	-0.111340
231	h1	H57	0.050950	290	h1	H95	0.125300
233	05	015	-0 400943	300		C48	-0.011100
234	c3	C29	0.241400	301	h1	H96	0.120200
235	h1	H58	0.004750	302	h1	H97	0.120200
236	h1	H59	0.004750	303	os	O25	-0.310300
237	c3	C30	0.019870	304	c3	C49	0.135700
238	h1	H60	0.056100	305	h1	H98	0.018190
239	h1	H61	0.056100	306	h1	H99	0.018190
240	os	O16	-0.350000	307	c3	C50	0.087700
241	c3	C31	0.161660	308	h1	H100	0.031700
242	h1	H62	0.041870	309	h1	H101	0.031700
243	h1	H63	0.041870	310	os	O26	-0.402000
244	c3	C32	0.032280	311	c3	C51	0.208030
245	h1	H64	0.054450	312	h1	H102	0.000400
246	h1	H65	0.054450	313	h1	H103	0.000400
247	os	O17	-0.240000	314	c3	C52	0.117440
248	c3	C33	0.009930	315	h1	H104	0.026700
249	h1	H66	0.059870	316	h1	H105	0.026700
250	h1	H67	0.059870	317	os	027	-0.343000
251	c3	C34	0.198660	318	c3	C53	-0.046499
252	hl	H68	0.009670	319	hl	H106	0.091000
253	hl	H69	0.009670	320	hl	H107	0.091000
254 255	os	C18	-0.431000	321	C3	U54	0.101100
255	c3	C35	0.225570	322	hl	H108	0.047070

No.	Type	Name	Charge	No	Type	Name	Charge
323	h1	H109	0.047070	388	c3	C73	0.107400
324	os	O28	-0.290000	389	h1	H146	0.025900
325	c3	C55	-0.009025	390	h1	H147	0.025900
326	h1	H110	0.050100	391	c3	C74	0.193100
327	h1	H111	0.050100	392	h1	H148	0.026300
328	c_3	C56	0.225570	393	h1	H149	0.026300
329	h1	H112	0.007690	394	os	038	-0.412400
330	h1	H113	0.007690	395	c3	C75	0.012200
331	05	029	-0 431000	396	h1	H150	0.058500
332	c3	C57	0 198660	397	h1	H151	0.058500
333	h1	H114	0.009670	398	c3	C76	0.262200
334	h1	H115	0.000070	300	h1	H152	0.000800
225		C58	0.009070	400	h1	H152	0.000800
336	63 h1	H116	0.009900	400	00	030	0.000800
337	h1	H117	0.059800	401	. 05	C77	-0.440000
001 990		020	0.039800	402	- CO - L1	11154	0.249700
220	- D	050	-0.240000	403) III 1.1	П104 11155	0.028500
339	C3	C59	-0.032300	404		H155	0.028500
340	n1	H118	0.054400	400		U18 11150	-0.081700
341	n1	HI19	0.054400	406		H156	0.071700
342	c3	C60	0.161600	407	hl	H157	0.071700
343	hl	H120	0.041800	408	os	040	-0.300000
344	hl	H121	0.041800	409	c3	C79	0.045980
345	os	031	-0.350000	410	h1	H158	0.052900
346	c3	C61	0.019800	411	h1	H159	0.052900
347	h1	H122	0.056100	412	c3	C80	0.065700
348	h1	H123	0.056100	413	h1	H160	0.058500
349	c3	C62	0.241400	414	h1	H161	0.058500
350	h1	H124	0.004700	415	os	O41	-0.400000
351	h1	H125	0.004700	416	c3	C81	0.139300
352	os	O32	-0.401000	417	′ h1	H162	0.039600
353	c3	C63	0.080800	418	h1	H163	0.039600
354	h1	H126	0.050900	419	c3	C82	-0.014500
355	h1	H127	0.050900	420	h1	H164	0.100600
356	c3	C64	0.160500	421	h1	H165	0.100600
357	h1	H128	0.014000	422	os	O42	-0.370000
358	h1	H129	0.014000	423	c3	C83	0.135300
359	os	O33	-0.380000	424	h1	H166	0.012400
360	c3	C65	0.085400	425	h1	H167	0.012400
361	h1	H130	0.041600	426	c3	C84	0.222500
362	h1	H131	0.041600	427	′ h1	H168	0.003400
363	c3	C66	0.237300	428	h1	H169	0.003400
364	h1	H132	-0.011600	429	05	043	-0.400000
365	h1	H133	-0.011600	430	c3	C85	0.157500
366	05	034	-0.470000	431	h1	H170	0.017600
367	c3	C67	0.320150	430	h1	H171	0.017600
368	h1	H134	-0.020100	433	c3	C86	-0.001500
360	h1	H135	-0.029100	436	h1	H172	0.050100
370	c3	C68	0.077300	435	h1	H173	0.050100
371	60 h1	H136	0.011300	436		044	0.000100
279	111 h1	L127	0.000800	400	05	C97	-0.200000
372		025	0.000800	407	- CO - L1	U07 11174	-0.142700
373	os	035	-0.370000	430) III 1.1	П174 П175	0.111500
374	CO 1.1	U09 11120	0.011000	435	- 11	П170	0.111500
373	n1	H138	0.084200	440	0 C3	088	0.021500
376	hl	H139	0.084200	441	hl	H176	0.096500
377	c3	C70	0.053000	442	hl	HITT	0.096500
378	hl	H140	0.058800	443	os	02	-0.531522
379	hl	H141	0.058800	444	c3	C3	0.215604
380	os	O36	-0.360000	445	h1	H6	-0.033074
381	c3	C71	0.068800	446	c3	C4	0.437179
382	h1	H142	0.045500	447	′ h1	H8	-0.017355
383	h1	H143	0.045500	448	n3	N1	-0.925440
384	c3	C72	0.120100	449	hn	H10	0.410259
385	h1	H144	0.042200	450	hn	H11	0.410259
386	h1	H145	0.042200	451	h1	H9	-0.017355
387	os	O37	-0.400000	452	h1	H7	-0.033074