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1 Introduction

Polypyrrole (PPy) is a prototypical conducting polymer formed by heterocyclic
aromatic monomers that are able to change its volume by 30% depending upon
its pristine (neutral) or doped (oxidized) chemical phases. Current computational
approaches have had difficulty calculating properties that agree well with exper-
imental results. In the past, our group developed a coarse-grained force field for
pristine 12 PPy (12 monomers per chain) in which the pyrrole monomers are
modeled by a planar 5-member ring with a permanent dipole moment pointing
from the monomer center of mass to the nitrogen atom [1]. We have extended
that force field for modeling the oxidized phase of PPy, which entails including
dopants and taking into account a number of polymer-dopant interactions. The new
force field has intra-chain terms similar to the previous model and new interchain
interaction components, Eint , including the interaction between monomers and
dopants, between dopants and dopants, and between monomers in a 12-PPy chain
with monomers in a different chain [2]. In total, the full model potential has 15
parameters. Polymer chains with 12 monomers per oligomer (12 PPy) are consistent
with the synthetic rendering of this doped polymeric material [3]. Dopants trapped
in the polymer matrix result in the oxidized phase of PPy by inducing a charge
transfer between the polymer and the dopants. In our case, the dopants acquire
negative charge, and the polymer chains lose electrons becoming positively charged.
Polymer matrix volume changes are dependent on the size and type of dopants used.
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In this work, we explore with a novel numerical simulation implementation
the ability to reproduce the volume expansion of PPy when oxidized. In Sect. 2,
we describe the custom parallelization implementation for the calculation of the
thermodynamic and mechanical properties of PPy using the newly developed force
field. Section 3 provides the calculated PPy properties obtained from the caloric
curve for a case system containing chlorine as the atomic dopants. Section 4
concludes this paper.

2 Methods

Although being a molecular component, each 12-PPy monomer will be referred to
as a particle. Dopants are atoms and will also be referred to as particles. Systems
ranging in size from 1024 to 19200 particles were explored for calibrating the size
scaling effect on the computational implementation. Simulations were performed
with our custom-developed horizontally scalable GPU accelerated Metropolis
Monte Carlo (MMC) implementation that utilizes the adaptive tempering Monte
Carlo (ATMC) method [4] for the sampling exploration of configuration space as
the parallelization strategy for intermolecular energy calculations. The ATMC visits
different NPT Gibbs ensembles along with the determination of the caloric curve
(enthalpy as a function of temperature). Indeed, the ATMC algorithm drives the
evolution of the simulation by selecting which temperature should be explored
along the caloric curve. Our numerical implementation supports four simulation
modes: NVT-MMC (canonical ensemble), NPT-MMC (isobaric-isothermal ensem-
ble), NVT-ATMC, and NPT-ATMC.

Parallelization of atomistic simulations typically falls into one of the three
categories: embarrassingly parallel or replica exchange, domain decomposition, and
farm or energy decomposition. The embarrassingly parallel or replica exchange
method maintains several independent replicas of the full system configuration, each
of them sets at a different temperature. A random walk is achieved by periodic
exchanges of configurations at nearby temperatures. The domain decomposition
method utilizes a spatial decomposition approach that allows for simultaneous
updates of all particles. The latter is accomplished by moving particles that are
outside each other’s cutoff radius. The farm or energy decomposition approach
achieves parallelization by splitting the particles into groupings and then calculating
partial energy values for each group. The latter are combined to determine the total
system energy. The parallelization approach selected for this research is a variant
of the farm or energy decomposition method and contains components of previous
MMC parallel implementations [5].
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3 Results

3.1 Parallelization Protocol for the PPy Condensed Phase
Analysis

The parallelization of our new potential model involves three levels of parallelism.
The first level of parallelism is provided by the usage of Open MPI, which provides
support for distributed memory systems such as computer clusters. The second tier
of parallelization is provided by OpenMP, which is designed for shared memory
architectures and is effective within one node of a computer cluster. The third
tier of parallelization is provided by CUDA. This combination of parallelization
technologies allows for an optimal utilization of current and future computational
platforms. The combined approach of the three-level parallelization scheme is
scalable to any sized system as specific care is taken in selecting the number of
nodes and processes so that internodal communication is minimized. The three-level
parallelization strategy is accomplished by partitioning the internal summations of
the model potential terms into sum segments, with each sum segment assigned
to a computational node. Each computational node evaluates partial one-particle
energies associated with the sum segment it was assigned. Each node utilizes a
combination of OpenMP and CUDA to further speed calculations.

The parallelization performance using the customized energy decomposition
approach is schematically shown in Fig. 1, illustrating the processing time of a
single MMC passage over all the particles when adopting different loads to the
OpenMP (threads), Open MPI (processors), or GPU. As evident from the plot,
when the number of particles is below 10000 (Fig. 1 inset), the selection of how
to combine processor and thread components is important because the CPU time
may be doubled if care is not taken. As the system is scaled up in size to many more
particles, the balance processor/thread is still important but not as damaging. Also
evident from Fig. 1 is that the processing time performance is the best when using
the GPU, if the latter is available. We emphasize that these performance metrics

Fig. 1 Performance metrics for the parallelization scheme processing time of one single MMC
iteration involving one passage over all the particles in the PPy system. The inset provides a better
view of the processing time differences for PPy systems with less than 10000 particles
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involve only one MMC step. In a regular simulation for obtaining the physical
properties of the PPy system, several millions of these steps are needed.

The overall analysis of the PPy system within a single node with GPU involves a
series of steps that we summarize in the flowchart depicted in Fig. 2. The control
node initializes the system of particles and then shares the system with worker
nodes. If the system is run in one node, the implementation calls one worker
(Fig. 2); otherwise, several workers may be called as illustrated in Fig. 3. Once the
PPy system is constructed, the spatial coordinates for the monomer and dopants
will be distributed to all processing nodes. One node is designated as the control
node and will perform all the reduction operations for the partial energies and
evaluated the Monte Carlo acceptance step criteria. Initially, the control node is
also given a sequence of random numbers and a set of random moves equal
to the number of particles in the system. Next, the sum segmentation of model
potential terms is determined based on the total number of monomers and dopants
in the system and the number of computational nodes available. Next, the random
translation/rotation MMC move of each particle is calculated on the control node,
and the coordinates of the moved particle are shared with the other computational
nodes where the new potential energy is calculated by segments. The computing
nodes share their calculated partial energies with the control node where the sum
of the partial energies is executed. The workflow enters next into the MMC main
loop by accepting or rejecting the monomer or dopant move (translation/rotation).
It is the control node that evaluates what action should occur next. If the particle
move is accepted, the simulation evolves to the next step of execution. If the
particle move is rejected, a reset message is broadcast to all compute nodes to
reset values. Although the acceptance/rejection of the particle move is done in the
control node, the potential energy associated with the moved particle is distributed
between the computing nodes. To accept a move, the control node checks that the
new potential energy be lower than the current or if the potential energy is larger,
then the decision is done by checking that the change in energy gives a probability
e−(Enew−Eold)/kBT larger or smaller than a random number in the range of 0–1,
where kB is Boltzmann’s constant and T is the set system temperature. The particle
motion step size is dynamically updated to ensure a 40% to 60% acceptance rate on
the particle movement. For efficiency purposes, the control node evaluates the PPy
intra-chain terms of the force field. The intra-chain potential energy is parallelized
on the control node using OpenMP; this does place more computation on the control
node but minimizes internodal communication overhead from Open MPI. The 12-
PPy oligomers explored in this research contain 12 monomers only. Thus, the
parallelization of the intra-oligomer potential energy represents a minimal gain that,
however, could become important if longer polymer chains are considered in the
future.

For a multi-compute node configuration, after the initialization step, the work
distribution step described previously would occur. Figure 3 illustrates the work
distribution for a multi-compute node configuration and a hypothetical number of
60,000 particles. In the multi-compute node configuration, each node is responsible
for the evaluation of only part of the Eint . In the instance where a GPU is available
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Fig. 2 General process workflow for the simulation utilized in this research
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Fig. 3 An example work decomposition using four nodes for a system consisting of 60,000
particles. The control node will be responsible for the delegation and management of all work
assignments

on each of the compute nodes, each compute node will off-load the Eint evaluation
to the GPU.

3.2 PPy Thermodynamic Properties

In this section, we focus primarily on providing the ATMC results for a mid-size oxi-
dized PPy system consisting of 8192 particles. Figure 4 shows the calculated caloric
curve for the PPy condensed system. Equilibrium density at ambient temperature
is in the range of 1.20 g/cm3 to 1.22 g/cm3, which is close to the experimentally
determined range of 1.30 to 1.46 g/cm3 [3]; bulk modulus was determined to be in
the range of 67–120MPa, which is within the range of published experimental work
of 100–350MPa [6]; and vector and orientational order parameters indicate that our
model reproduces the planar stacking of the polymer chains and specific heat value
of 855.93 J kg−1K−1 at 300K that are within the experimental range of values of
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Fig. 4 Caloric curve results from the ATMC simulation beginning at 1000K and ending at 300K
at 1 atm pressure for a particle system of 6144 pyrrole monomers and 2048 chlorine atom dopants

800–1400 J kg−1K−1 [7]. The glass transition temperature was determined to be
400.8K, which is in very good agreement with the experimentally determined value
of 394K [8].

Concerning the structure of the 12-PPy chains, remarkably, they remain quite
stiff along these extensive simulations maintaining a quasi-planar geometry even
at high temperatures. The radius of gyration, end-to-end distance, and orientational
order parameter change at most by 5% from the initial fully planar conformation.
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4 Conclusion

The new force field accurately produces results consistent with values obtained
experimentally for oxidized PPy systems. Our model reproduces the stacking of
planar PPy chains observed in the experimental microstructure. We predict a glassy
structure below the glass transition of 400.8K. Other calculated properties of
this glassy condensed system include the heat capacity, thermal expansion, and
structural order parameters, which agree well with experimental and observation
data.

The ATMC method provided an efficient and fast method for thoroughly explor-
ing the configuration space of the PPy system. The ATMC provided significant
computational time savings even though it visited a larger number of ensembles. The
customized energy decomposition approach combined with a hybrid OpenMP-Open
MPI multiprocessing strategy allows for the horizontal scalability to accommodate
system configurations of a wide range of sizes, accomplished by minimizing
data transfers between computational resources. Currently, we are applying this
implementation to other complex systems.
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