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DEPENDENCE OF THE SPECIFIC HEAT ON THE SPECTRUM FLUCTUATIONS
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We obtain exact numerical values for the specific heat at low temperatures of a set of systems of independent
fermions whose single particle energy levels follow a Poisson, Picket Fence, Uncorrelated Wigner and Gaussian
Orthogonal Ensemble statistical distributions. Our results are compared with the approximate ones obtained by

Denton, Miihlschlegel and Scalapino.

Consider a set of N quantum systems, each con-
taining a fixed number n® (a = 1, ..., N) of indepen- ! %
dent fermions. The independent-particle spectrum has \
an average spacing 8 between adjacent levels. The ' ‘
thermodynamic properties of the set of N quantum sys- PF

tems will depend on the detailed properties of their BL

spectra, if the typical thermal energy kg T is of the
order or less than &, where kg is Boltzmann’s constant
and T is the temperature. In other terms, when § = ] /

kg T/8 < 1, such properties as the specific heat at con- g \

stant volume C, will depend on the spacing distribu- =

tions obeyed by the N spectra. This was first noted by =
Kubo [1], when he discussed the problem of small
metallic particles at low T, which we shall mention
towards the end of this note. o
It is our intention here to compute C, for sets of - \
systems with different spectrum fluctuation properties, o | -
but all with the same §: a set corresponding to a com- ' AN
pletely random sequence of levels, which implies a ‘
Poisson spacing distribution [2]; another one which T
has the same spectrum fluctuations as the Gaussian
Orthogonal Ensemble of random matrices (GOE) [2];
and a set for which the spectrum consists of a Picket Fig. 1. Distribution of the nearest-neighbor spacings s = Ej,,
Fence (PF), i.e. a sequence of equally spaced levels. — Ej, measured in terms of the average spacing 5, for the
The corresponding nearest-neighbor spacing distribu- Poisson (P), Wigner (W) and Picket Fence (PF) cases. Here E;
are the single-particle energies and x = /6.

tions are shown in fig. 1. Our calculation will be re-
stricted to values of § < 0.2, since for larger values the
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Fig. 2. Values of @ = Cy/Nkp versus ¢ = kgT/5 for a com-
pletely random spectrum (P), Uncorrelated Wigner (UW),
Gaussian Orthogonal Ensemble (GOE) and equally-spaced
spectrum (PF) cases. As the error bars for UW and GOE are
of the same order of magnitude, only the latter are shown.

for @ =1 all three cases lead to the same values of Cy
and for @ > 1 the spectra appear to be continuous the
bulk value follows [1].

Since the number of fermions in each system is
fixed, the canonical ensemble is appropriated and the
specific heat €, is given by [3]

C, _ Nt 3 ISESE -1

S )
YNk (KGT)? sl T (Sp(@))?

where

S= ? gE @Y exp{—E@/kyT}, )

with /=0, 1,2. Here C§f‘) and g%a) are the energy and
degeneracy of the level A of the a-th system containing
n@ independent fermions. As we are only interested
in low values of @, the summations can be restricted to
a small number of many-fermion states for which only
a few fermions are excited outside the Fermi sea; the
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Fig. 3. Comparison of the results of this calculation (solid lines:
P, GOE) with those reported in Denton et al. [5| (broken
lines: Pp, GOED) for the specific heat Gy in two different
cases: Poisson and GOE. Kubo’s result [1] for Poisson (PK)

is also shown.

calculation is then feasible. We therefore proceed as
follows: a set of NV spectra with the appropriate spacing
distributions is generated by the computer and a suffi-
cient number of single-particle states around the Fermi
level are taken into account such that the S; are ob-
tained with a given desired precision, which in the cal-
culation reported here is 106,

The results of such a calculation are shown in fig. 2
for the Poisson, the GOE and the Picket-Fence cases.
The values given correspond to an average over systems
with even-odd number of fermions. The error bars
indicated in the figure are due to the finite sampling
of 2000 systems. One can see that C, is largest for the
first set of spectra and smallest for the equally spaced
ones. This can be understood by a simple qualitative
argument. At low values of 4 it is the spacing between
the Fermi level and the level immediately above it the
only one that matters to determine €. But, as is clear
from fig. 1, the probability of finding a small value for
this spacing is largest for the Poisson spectrum, inter-
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mediate for the GOE case and smallest for the delta
distribution. The ordering of the values of €, due to
the presence of the Boltzmann factor, then follows
accordingly .

We have also given in fig. 2 the results for a fourth
case, labelled Uncorrelated Wigner (UW). These spectra
are generated in such a way that the first nearest-
neighbor spacing distribution is identical to that of
the GOE case; second and higher order spacings follow
the same Wigner distribution law but the spectrum is
generated assuming no correlation among spacings.

We can see that these correlations are not important
at very low values of 8, when only the first spacing
enters in the calculation, and that the value of @, is
larger for UW than for GOE when 6 grows. This is so
because at very low 8 only one spacing matters and
for both types of spectra the most probable one is,
from fig. 1, x = 0.8; for higher 6 the next spacing
becomes important: for UW this is uncorrelated with
the previous one and, therefore, it is likely to occur
also at x ~ 0.8. On the other hand, for GOE the corre-
lation coefficient between successive spacings is nega-
tive [4] and equal to 0.27, which implies that the se-
cond spacing is larger than for the UW spectrum and
therefore the corresponding contribution to the Boltz-
mann factor will be lower in the GOE case than in the
UW case.

As we mentioned before, the interest in the depen-
dence of @, in the spectrum fluctuations arose from
the problem of the thermodynamic properties of
small metallic particles at low temperatures. In this
particular case, the best theoretical calculation is due
to Denton et al. [S], who computed @, assuming that
only a few levels around the Fermi level follow the
appropriate spectrum fluctuations, the rest being an
equally spaced spectrum. It is then clear that their
results will be exact for the Picket Fence case and
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will be better the more the spectrum resembles it.
From fig. 1, we then expect their calculation to be
better for the GOE than for the Poisson case. This
turns out to be true, as we can see from fig. 3, where
our results for C, are compared with those of Denton
et al. We also report the linear behaviour predicted by
Kubo [1] in the Poisson case.

The results shown in fig. 2 are then important for
the comparison with experimental values, since it is
by no means clear which spacing distribution is the
correct one for a powder of small metallic particles:
in fact, we have given evidence [3} that random
matrices do not constitute an appropriate model to
represent random surface irregularities and that a
Poisson spectrum might be the correct one. In any
case, our fig. 2 can be considered as a morphologic
chart of specific heat curves, which might be important
for other quantum systems besides the powder of
small metallic particles.

We would like to thank Mr. R. Soto for some help
in the early stages of the computation and to the
Centro de Servicios de Computo of the UNAM, for
making available their computer facilities.
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