
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2012)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.2912

A cloud computing system in windows azure platform for data
analysis of crystalline materials

Qi Xing 1 and Estela Blaisten-Barojas 1,2,*,†

1Computational Materials Science Center, George Mason University, Fairfax, VA 22030, USA
2School of Physics, Astronomy, & Computational Sciences, George Mason University, Fairfax, VA 22030, USA

SUMMARY

Cloud computing is attracting the attention of the scientific community. In this paper, we develop a new
cloud-based computing system in the Windows Azure platform that allows users to use the Zeolite Structure
Predictor (ZSP) model through a Web browser. The ZSP is a novel machine learning approach for classifying
zeolite crystals according to their framework type. The ZSP can categorize entries from the Inorganic Crystal
Structure Database into 41 framework types. The novel automated system permits a user to calculate the
vector of descriptors used by ZSP and to apply the model using the Random Forest™ algorithm for
classifying the input zeolite entries. The workflow presented here integrates executables in Fortran and
Python for number crunching with packages such as Weka for data analytics and Jmol for Web-based
atomistic visualization in an interactive compute system accessed through the Web. The compute
system is robust and easy to use. Communities of scientists, engineers, and students knowledgeable
in Windows-based computing should find this new workflow attractive and easy to be implemented in
scientific scenarios in which the developer needs to combine heterogeneous components. Copyright © 2012
John Wiley & Sons, Ltd.

Received 23 April 2012; Revised 11 July 2012; Accepted 15 July 2012

KEY WORDS: cloud computing; Windows Azure; heterogeneous scientific workflow; machine learning;
zeolite structure predictor

1. INTRODUCTION

Cloud computing [1–4] is a model that enables on-demand network access to configurable
computing resources that are supplied to the user without service provider intervention [5]. Indeed,
a cloud computing platform packages information technology (IT) resources and fetches services to
customers such that they simply have to access the interface of the cloud platform to use the services.
This is a new paradigm for scientific applications that do not require sophisticated parallelization
and are currently performed in small computer clusters [6, 7]. Despite the existence of public
clouds [8] such as Amazon [9–11], Google [12, 13], Microsoft [14, 15] providing customers with
measured services through the Internet, the potential of cloud computing for scientific applications
remains largely unexplored [16–20]. Currently, there is lack of open source workflows geared toward
research groups in the sciences, applied mathematics, and most of the engineering communities.
This deficiency is a fact because cloud developers have primarily targeted customers in business,
government departments, and individuals. The absence of science and engineering consumers using
public clouds is recognized by organizations such as the US National Science Foundation [21]. This
organization funds fundamental research and can adopt a pay-per-use funding mechanism, if the

*Correspondence to: Estela Blaisten-Barojas, Computational Materials Science Center, George Mason University,
4400 University Dr, MS 6A2, Fairfax, VA 22030, USA.

†E-mail: blaisten@gmu.edu

Copyright © 2012 John Wiley & Sons, Ltd.

Q. XING AND E. BLAISTEN-BAROJAS

sciences, engineering, and mathematics communities embrace the cloud computing paradigm.
A large number of educational and small-to-medium research laboratories would benefit. Cloud
computing differentiates from grid computing because instead of batch job queues, the user receives
virtual resources. Of particular importance for scientific research where numerical accuracy is
important is that cloud computing offers deployment and control of applications, thus reducing
compatibility issues between the application and the hosting environment [22]. However, for cloud
computing to become efficient for a given science application, a specific-to-problem computer
system workflow needs to be created to link the user application with the IT cloud resources [23–25].

Windows Azure (WA) is a public cloud based on the deployment model Platform as a Service
(PaaS) that runs on servers located in Microsoft data centers [26]. This cloud became available to
developers from the public in April 2010. The WA PaaS is connected to the Internet and consists
of a scalable cloud operating system, data storage fabric, and services delivered by physical or
logical Windows Server instances. Within PaaS, users are capable of deploying onto the cloud their
user-developed or acquired applications created with programming languages, libraries, services,
or tools supported by the cloud provider. This implies that the user has a high level of control
over the deployed applications and configuration settings for the application-hosting environment,
but does not manage or control the underlying cloud infrastructure that includes network, servers,
operating systems, and storage [5]. Recent corporate efforts by Microsoft are making WA PaaS
attractive for scientists interested in implementing applications with Software as a Service (SaaS)
[27] and for storage applications [28]. The PaaS approach is different from Amazon’s EC2
Infrastructure as a Service (IaaS) where the user is provided a host for a virtual machine with
processing, storage, networks, and other fundamental computing resources such that he/she can
deploy and run any software, including operating systems and applications [29]. In this case, the
user has control over operating systems, storage, deployed applications, and limited control of select
networking components, but does not manage or control the underlying cloud infrastructure [5].

To address the bottleneck that scientific consumers encounter to use public clouds, in this
paper, we describe a new cloud-based scientific computing system, referred to as Structure-
Adaptive-Materials-Prediction (SAMP) for bringing the Zeolite Structure Predictor (ZSP) [30] to an
automated access through the Web. Our computing system is developed for the WA platform. ZSP is
a machine learning model that classifies zeolite crystals according to their framework type (FT) into
41 FTs. The ZSP model is trained on 1473 zeolite entries [31] from the Inorganic Crystal Structure
Database (ICSD) [32], is built from a nine-descriptor vector, and uses Random Forest™[33] for
the classification task. The accuracy of the ZSP model is 98%. This is the first time a cloud-based
computing system is built for automating the calculation of descriptors and their use in machine
learning classification and clustering. The cloud infrastructure offered by WA is a good choice for
SAMP workflow because of the increased work efficiency that a PaaS-based platform offers to the
developer as compared with the work investment needed in an IaaS-based platform. Communities
of materials scientists, chemists, engineers, and STEM (Science, Technology, Engineering, and
Mathematics) students knowledgable in PC-based Windows environments have a growing interest
in the heterogeneity of runtimes used in services and architecture of the WA domain. In particular,
the researcher community that employs the ICSD will find that the SAMP compute system allows a
fast analysis for classifying new zeolite entries or other inorganic crystals. The computing workflow
of SAMP is generalizable for different science applications. It suffices to change the services (codes
to be executed) and the third-party software packages (data analysis and visualization) by those
adequate to another science application for the compute-system to be usable in a different scientific
scenario. The novelty of this workflow is its full implementation in the WA PaaS combining very
heterogeneous user-supplied software, which makes it unique for scientific applications. This new
compute system will be very useful for applications that are both data intensive and computa-
tionally intensive benefiting by the parallelization scheme that supports SAMP. For example, with
minor modifications, the full compute-system workflow of SAMP will serve users interested in the
scientific open-source software packages LAMMPS [34], NAMD [35], SIESTA [36], CPMD [37],
just to mention a few.

This paper is organized as follows. Section 2 gives a description of the cloud environment
preparation, the data parsing and manipulation, the four cloud services developed, and the parallel

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
DOI: 10.1002/cpe

A CLOUD COMPUTING SYSTEM IN WINDOWS AZURE PLATFORM

environment developed employing the Server Message Block (SMB) protocol. Section 3 gives
performance results of SAMP in WA and comparison with local execution. Section 4 concludes
this work.

2. THE STRUCTURE-ADAPTIVE-MATERIALS-PREDICTION COMPUTE SYSTEM IN
WINDOWS AZURE

The WA PaaS provides developers with four cloud technologies crucial for developing applications
to be run in the cloud. These components are illustrated in Figure 1(a): (i) WA (which requires a
Windows-based local environment) for running applications and storing data on servers located
at the data centers, (ii) data services in the cloud based on SQL, (iii) distributed infrastructure
services to cloud-based and local applications through .NET, and (iv) access to data from Windows
Live applications.

The WA component of PaaS has three elements [38] that work together: a compute service that
runs applications, a storage service, and a fabric that supports the compute and storage services. For
the compute service to use PaaS, developers must create a Windows application consisting of web
roles and worker roles. A web role is a web application in which a user interacting via a web page
instructs the system to process certain desired tasks. A worker role is the equivalent of a Windows

Local System

Applications

Windows Azure

Compute Storage

Fabric

SQL Service

.NET Service

Live Service

P
aaS

(a)

Four
Services

for
SAMP
system

Python
Supercell
Service

Descriptor
Service

FORTRAN

Jmol
Visualization

Service

Zeolite Structural
Predictor (ZSP)

Service

Random
Forest

(b)

(c)

Figure 1. Structure-Adaptive-Materials-Prediction (SAMP) compute system in Windows Azure platform:
(a) the four components of PaaS: SQL Service, .NET Service, and Live Service, (b) the four services for the
SAMP compute system, supercell, descriptor, ZSP, and visualization that allows use of a battery of in-house

codes, (c) a diagram of SAMP compute system workflow.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
DOI: 10.1002/cpe

Q. XING AND E. BLAISTEN-BAROJAS

service that can be programmed to execute and terminate desired tasks. For example, a worker role
may implement the execution of in-house codes, launch hosted executable applications, write files,
and store results.

The WA storage (WAS) [39] provides four services (BLOB, Table, Queue, Drive) [40] that are
secure [41], scalable, and easy to access making storage activities durable in the cloud. The BLOB
(binary large object) service is the file system providing storage for large datasets such as images,
video, documents. BLOB is the simplest way to store text or binary data on WA. The Table storage
provides structured storage in the form of tables and supports simple queries on partitions, row keys,
and attributes. The Queue service provides a basic queue model to deliver messages asynchronously.
This service also enables the communication between the other services. The Drive service (Xdrive)
provides NTFS volumes for WA applications. An important characteristic of WAS is that a virtual
machine can access the storage facilities with its proper authentication. Therefore, Xdrive can be
made available for storing results of a computational task. In addition, WAS may be used for shared
storage among several virtual machines.

The WA fabric consists of a large group of servers, all of which are managed by the fabric
controller [26]. WA applications and data residing in WAS are distributed through the fabric
controller to every server in the fabric. The fabric controller does several useful tasks such as
monitoring all running applications, managing the operating system in the cloud, deciding where
new applications should run, and choosing servers to optimize hardware utilization.

2.1. The compute system

The ZSP permits automatic determination of the framework types of zeolite crystals. This model
is based and trained on crystal data of zeolites cataloged in the ICSD [30, 31, 42]. The purpose of
setting the ZSP in the WA cloud is to open up the predictive capabilities of the model to whoever
wants to use it with a web browser access. Our expectation is that the WA PaaS should minimize the
work of developers when compared with services based on IaaS. One objective is the development
of Web-based computing access for automating the calculation of the descriptors that enter in ZSP.
The descriptors are needed for analyzing any new dataset of interest to a user. A second objective
is to automate the machine learning analysis for classification of the new entries in one of the 41
framework types that ZSP can classify.

With these objectives in mind, we have developed the SAMP compute system. SAMP possesses
four services for distributing results from our battery of serial in-house codes: supercell, descriptor,
ZSP, and visualization [30, 42]. Figure 1(b) shows schematically these four services and the third-
party software uploaded to the cloud required to implement them. Service supercell uses the
Python compiler and libraries. Service descriptor requires the dynamic links and runtime libraries
of Fortran. Service ZSP uses the classification algorithm Random Forest™[33] as implemented in
the open source package WEKA [43]. Service visualization employs the Jmol modeler [44].

The SAMP compute system is a parallel engine running on the WA. A schematic workflow is
given in Figure 1(c). Currently, tasks are parallelized into 20 processes. When the user provides a
dataset of entries to SAMP, then SAMP deploys one web role and 19 worker roles. The web role
stores the user provided zeolite entries, sends them along with messages to WAS and delivers them
to 19 worker roles for background processing. The 19 worker roles receive different inputs from
the web role. One worker role is designated as server, wrserver, to organize the processing tasks, to
host, and to share Xdrive. The remaining worker roles, wrclient(i) with i D 1� 18, execute the tasks
in parallel. The input queue contains a number of messages. SAMP extracts one message from the
input messages and then dispatches the message to each wrclient for execution. Once these tasks
are executed, the 18 wrclient interact with Xdrive to store results and update the status in the Shared
Access Signature (SAS). In addition, SAMP uses the query data-parallel pattern such that several
queries can be done simultaneously.

To start any calculations, we deploy the compute system in WA. This requires upload of our
in-house codes, compilers, libraries, and software packages to our assigned disk in the cloud where
they subsequently reside as long as desired. The uploading time depends on the size of the package
to be uploaded. Our 2-GB software package requires a one-time loading time of about 100 min that

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
DOI: 10.1002/cpe

A CLOUD COMPUTING SYSTEM IN WINDOWS AZURE PLATFORM

do not involve computations or invoking services. The deploying time is used for completing five
steps: (i) uploading our software package plus VC++ and Java runtime libraries to WA, (ii) initializ-
ing the system in WA, (iii) creating the web role, wrserver, and wrclient instances, (iv) installing the
VC++ and Java runtime libraries, and (v) sharing Xdrive among the 18 wrclient instances using SMB
protocol. Unfortunately, VC++ and Java runtime libraries do not reside in WA permanently, other-
wise the uploading time will be considerably shorter. During the uploading time, there are several
tasks needed as described in Section 2.2.

2.2. Preliminary definitions and data conversion

A WA project containing associations between the web/worker roles and the expected solution is
created as first step. The project sets the service definition file and the service configuration file
[45]. The service definition file defines the runtime settings for the application, including those
worker roles to be used, endpoints, startup, Xdrive information, and Xdrive sharing definition. The
service configuration file gives configuration for the web role, defines the number and type of worker
roles (wrserver, wrclient), assigns setting values to the various roles, and contains Xdrive information
(name, size, disk letter). Windows Azure Tools of Visual Studio [45] provide templates for different
types of web roles. Steps to create the wrserver include: (i) creation of a worker role project [45],
(ii) assignment of configuration parameters for connecting to WAS, for mounting Xdrive (where all
the in-house codes reside), for initializing services, compilers and libraries, (iii) Xdrive mounting,
and (iv) Xdrive sharing by its assigned name (TCP port 445 enabled as an internal endpoint) so that
it can receive requests from other roles through the SMB protocol [45–47]. The latter involves: user
accounts creation that authenticate the wrclient instances (user name/password are assigned in the
service configuration), granting full access to user accounts, and enabling inbound SMB traffic.

The SAMP compute system uses an ASP.NET (.NET Framework 4.0) web role for building
an ASP.NET application with web front-end. The newly created web role specifies the ASP.NET
pages and the services included in SAMP. The web role also configures the service definition files
and service configuration files for connection to WAS. SAMP defines two types of worker roles
for performing background processing: the worker role server wrserver and the worker role client
wrclient. The tasks of the wrserver are organization, processing, and mounting/sharing the Xdrive.
The task of the wrclient instances is to assign a drive letter (specified in the configuration file) to the
shared Xdrive mounted by the wrserver. At start up, the wrclient instances locate the wrserver, identify
the address of the (SMB) endpoint, and assign a letter to the shared drive. At this point the wrclient
instances are ready to read and write to the shared drive. This task emulates writing to a local drive.
The global workflow in SAMP proceeds as follows. The web role hosts the front-end logic, handles
user requests, and the visualization service. The back-end processing services (supercell, descriptor
and ZSP) are implemented through the worker roles. The communications (message, data, entry)
between web role and worker roles are connected through WAS. A diagram of such workflow is
given in Figure 1(c). We developed our own SAMP task scheduler; a task is serialized into an Azure
message and all task messages are afterwards queued into the global task queue that identifies all
the uploaded zeolite entries.

A significant portion of the SAMP setup initial time is due to the preparation of Xdrive to be
shared by the wrclient instances. Figure 2 shows Xdrive sharing time for the 18 wrclient instances.
This time indicates how long it takes for each wrclient instance to share Xdrive through SMB. Seven
trials at different moments along a day were performed. As seen in the figure, the time dispersion
is significant, even when the process is done at night (trial # 7). Also visible is the high variability
on the time in the seven different trials. Thus, we conclude that the dispersion is built into the WA
cloud because there is no way of controlling where the wrclient instances do their work. On average,
the sharing time of the 18 wrclient instance is 9.10 min. We note that the wrclient instances start to
accept tasks when the Xdrive sharing is finished.

A user request involves uploading of a zeolite dataset to the website. The web role creates
a message identified by the uploaded file name and pushes it into the file upload queue.
Simultaneously, the web role creates a container in Blob storage and stores there the zeolite dataset.
Meanwhile, the wrserver fetches the message from the file upload queue and downloads the zeolite

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
DOI: 10.1002/cpe

Q. XING AND E. BLAISTEN-BAROJAS

Figure 2. Xdrive sharing time needed to set up the 18 wrclient instances in seven different trials. The mean
sharing time of the 18 wrclient instances in each trial is reported with a filled square.

Figure 4

dataset
upload

WR

WR

WR

Blob

wrserver
Xdrive

X
drive

WRdisplay
status

create
message

upload and
blob storage

fetch
message

download

split datasetcreate
entry table

create task
message

file upload queue

Mk... M1M2...

wrserver

wrclient

wrserver

wrserver

wrserver
wrserver

global task queue

T1T2Tk... ...

zeolite
1

......

zeolite
2

zeolite
3

zeolite
k

w
rclient

wrclient

wrserver

wrserver

...
...

status1

Table

status2

status3

statusk

Figure 3. Workflow of the dataset conversion in WAS showing the tasks executed by the web role (WR), the
wrserver and the 18 wrclient instances.

entries in the Blob container to Xdrive naming the file with the message identifier. If the dataset
contains multiple zeolite entries, the wrserver splits the original file into individual zeolite entry files
identified by the zeolite ICSD number. In this case, a task message for each individual zeolite entry
is created and pushed into the global task queue. Each message has the zeolite ICSD number as
identifier. Next, a table of zeolite entries is created in the Table storage containing the entry ID as its
entry index. In addition, the process status of the data conversion, supercell, and descriptor services
for each zeolite entry is stored in that table. This entry table is shared with the 18 wrclient such that
the status is updated when processes are finished. The workflow of the data conversion is shown
schematically in Figure 3.

2.3. Supercell, descriptor, ZSP, and visualization services

The 18 wrclient instances compete for tasks from the global task queue. Once a wrclient instance
gets a task message, it parses the zeolite ID from the message and then interacts with Xdrive
where the zeolite dataset is stored. Next, the wrclient instance executes the supercell service and

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
DOI: 10.1002/cpe

A CLOUD COMPUTING SYSTEM IN WINDOWS AZURE PLATFORM

records the calculated supercell of each zeolite in Xdrive. Subsequently, the wrclient instance creates
a supercell container in Blob storage and uploads the supercell dataset to it. When one wrclient
instance successfully executes the supercell service, it updates the process status for that zeolite
in the entry table to indicate that execution of the supercell service is concluded. In the event that
the wrclient instance fails to execute the supercell service, the task is restored into the global task
queue allowing another wrclient instance to pick it up. A workflow for these multiple steps is given
schematically in the upper portion of Figure 4.

Once supercell service is executed successfully, the wrclient instance proceeds to execute the
descriptor service by fetching the supercell dataset of one entry from Xdrive. Next, the descriptor
service is executed, meaning that a fortran code executable and corresponding dynamic link libraries
are used in Xdrive. The output is a vector of nine descriptors for each zeolite that is initially stored in
Xdrive. To end the descriptor service process, each wrclient instance updates the status of that zeolite
in the entry table, stores the descriptor vector in the table, creates a descriptor container in Blob
storage and uploads the descriptor vector to it. The bottom portion of Figure 4 shows schematically
this workflow. SAMP compute system provides an interface that binds descriptors stored in the table
to the web page managed by the web role. This allows the user to check the calculated values of
the descriptors. Furthermore, the user has the ability to request a download of these values, which
will be executed by the web role by parsing and fetching the descriptor dataset in Blob storage,
and finally completing the downloading request (Figure 5(a)). From the website, the user has the
option to request visualization of the supercells once these are generated. SAMP compute system
parses and specifies the ICSD identifier of the zeolite supercell, fetches the supercell dataset from
the supercell Blob storage and loads it into Jmol (stored in the web role) for visualization directly
in the website. A workflow is shown in Figure 5(b).

The ZSP service is tasked to run Random Forest™ using the values of all descriptors stored in the
table. When the user requests the ZSP service, the web role creates a ZSP request queue and queues
a new message. The wrserver instance fetches the message from the ZSP request queue, loads the
descriptors stored in the Xdrive, and executes Random Forest (running WEKA in Xdrive). This
task renders the classification of the zeolite data into 41 framework types, each framework type is
a different class. Once this task is finished, the wrserver creates a ZSP container in Blob storage
and uploads there the classification results. The web role binds the web page to this ZSP blob
container and results are uploaded and displayed in the Web page every 8 s. A workflow is shown
in Figure 5(c).

fetch
message

fetch
zeolite

run
supercell
service in

Xdrive

upload and
blob storage

fetch
supercell

run
descriptor
service in

Xdrive

upload
descriptor

update entry
table

update entry
table

upload and
blob storage

B
lob

Blob

Table

WR

WR

WR

wrclient

wrclient wrclient

wrclient wrclient

wrclient

wrclient

wrclient

Figure 5b

wrclient

Figure 3

Xdrive

...
...

supercell1
supercell2
supercell3

supercellk

Xdrive

...
...

descriptor1

descriptor2

descriptor3

descriptork

w
rclient

wrclient

Figure 5a

...
...

descriptor1

descriptor2

descriptor3

descriptork

wrclient

wrclientwrclientdisplay
descriptor

Figure 5c
wrserver

Figure 4. Workflow of supercell service (top) and descriptor service (bottom). WR stands for web role.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
DOI: 10.1002/cpe

Q. XING AND E. BLAISTEN-BAROJAS

specify
descriptor

name

download
request

fetch
descriptor

download
descriptor

WR

WR

WRWR

...
...

descriptor1

descriptor2

descriptor3

descriptork

Blob

Figure 4

wrclient

(a)

Blob

specify
supercell

name

fetch
supercell

display
supercell

load
supercell in

Jmol

WR

WR WR

WR

...
...

supercell1
supercell2
supercell3

supercellk

display
request

WR

Figure 4

wrclient

(b)

create
message

run ZSP
service in

Xdrive

display ZSP
result

ZSP request

upload and
blob storage

WR WR

WR

ZSP request queue

Zk... Z1Z2...
wrserver

w
rserver

Figure 4Xdrive

w
rserver

wrserver

(c)

Figure 5. Workflow of how the user accesses the display of (a) the table of descriptors, (b) the visualization
service, and (c) the Zeolite Structure Predictor service. WR stands for web role.

3. SYSTEM PERFORMANCE

Several performance tests were carried out to assert time needed for processing and comparison
with local execution.

For the processing performance test, the 1473 zeolite entries were split into 11 separate datasets
of variable sizes as specified in Table I. Datasets 6, 7 and 8 contain 500, 500 and 473 zeolite entries,
respectively, a mere split of the 1473 available entries into three groups. Datasets 1 through 5 contain
variable numbers of entries from subset 6, whereas datasets 9 through 11 are formed by merging
dataset 6 with 8, dataset 7 with 8, and dataset 6 with 7, respectively. Dataset 12 contains all of
the 1473 zeolite entries. These 12 datasets were processed independently in the SAMP compute
system to measure the following: (i) the efficiency of the wrclient instances as a function of number
of entries processed (mean of time employed by each wrclient to process each dataset <time>);
(ii) the processing load used by each wrclient as a function of dataset size (mean of number of entries
processed by each wrclient <load>); and (iii) the elapsed processing time used by the 18 wrclient
instances for each dataset (from when one wrclient instance begins to process the first zeolite entry to
the time when another wrclient instance finishes the process of the last zeolite entry). Based on these
measurements, mean time <time>, mean load <load>, their standard deviation SDtime, SDload,
and coefficient of variation CVtime, CVload are reported in Table I. For dataset 12, the ZSP service

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
DOI: 10.1002/cpe

A CLOUD COMPUTING SYSTEM IN WINDOWS AZURE PLATFORM

Table I. Pertinent quantities monitored in Structure-Adaptive-Materials-Prediction
system for assessing performance.

<time> SDtime CVtime <load> SDload CVload Total time
Set # entries (min) (min) % % (min)

1 50 10.89 1.53 14.05 2.78 0.55 19.78 13.95
2 100 23.23 1.46 6.28 5.56 0.98 17.63 25.82
3 200 40.28 1.31 3.25 11.11 1.41 12.69 43.72
4 300 60.16 1.96 3.26 16.67 1.37 8.22 63.97
5 400 80.05 1.02 1.27 22.22 1.26 5.67 81.63
6 500 102.36 1.28 1.25 27.78 1.83 6.59 105.37
7 500 104.83 1.45 1.38 27.78 1.63 5.87 106.95
8 473 131.91 1.2 0.91 26.28 1.87 7.12 134.13
9 973 246.47 1.69 0.69 54.06 2.24 4.14 249.28
10 973 243.42 3.19 1.31 54.06 5.54 10.25 255.28
11 1000 206.9 1.43 0.69 55.56 3.96 7.13 208.93
12 1473 356.04 3.69 1.04 81.83 4.79 5.86 361.95

generates our machine learning model, same as that stored in the cloud, allowing users to use our
trained model to classify any new zeolite entry [30, 31, 42].

From the statistics summarized in Table I, we conclude that the load on each wrclient instance
does not degrade the processing time. Small deviations are fully within the error indicated by both
SD and CV. Analysis of the SDtime and CVtime shows that the full workflow time is about 2 min
and execution time is homogeneous, independently of the average load on each of the 18 wrclient
instances. Dataset #10 behaved somehow differently than the others. However, this is expected
because dataset #8 contains several entries that are more complex than the rest, and their execution
is longer. The processing time of the supercell service is considerably smaller than the descriptor
service. Figure 6(a) shows the processing time of the supercell service for each zeolite entry in
dataset # 12, as a function of the number of atoms in the supercell and Figure 6(b), shows the
processing time of the descriptor service. These two figures clearly show that the majority of the
processing time is taken by the descriptor service. Supercell service spends less than 2 min to create
any supercell regardless of the number of atoms. It is also interesting to note that in this sample, most
of the supercells created have less than 8000 atoms. There are only a few zeolites with supercells
containing 8000 to 19,500 atoms, and the descriptor service processing times for them was between
8 and 17 min. This is expected because several descriptors are based on calculations of distances
between atoms and their number scales as the square of the number of atoms [30, 31, 42].

By comparing the processing time of the SAMP compute system in the WA using one and
18 wrclient instances, we calculated the speedup of the parallel implementation. Speedup was
obtained for datasets 1 through 6 and 11 as shown in Table II. A significant improvement of the
speedup is obtained for datasets of 400 entries or more, reaching an almost perfect value of about
17.5. The slight degradation is due to the SBM protocol and bandwidth limitation between the
18 wrclient instances.

In addition, a comparison was done with the processing time of the same datasets in one dedicated
local PC. The WA computers are quad-core AMD™2373 EE at 2.10 GHz with 1.75 GB memory
running Windows Serverr 2008 Enterprise. Our dedicated local PC is an Intelr core 2 Duo™E8400
at 3.00 GHz with 4 GB memory running Windows 7 Enterprise. Results are summarized in Table II.
Although the hardware of the two systems is different, it is obvious that a significant speedup of
about 11.0 is rendered by the parallel implementation of SAMP compute system over the local
PC. Our services are serial codes and not memory eager, so the discrepancy in memory size is
not important.

Signal communication, data transmission, and I/O among the 18 wrclient instances affect the
bandwidth. WA defines bandwidth based on the number of cores that each wrclient instance uses
[48]. SAMP compute system assigns only one core to each wrclient because our codes and software
packages [30, 31, 42] are serial. Thus, the available bandwidth is 100 Mbps. Parallelizing the codes

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
DOI: 10.1002/cpe

Q. XING AND E. BLAISTEN-BAROJAS

(a)

(b)

Figure 6. Processing time of the 1473 zeolite entries: (a) processing time of the supercell service, (b)
processing time of the descriptor service.

Table II. Effect of load on the speedup of the SAMP computing system.

18 wrclient 1 wrclient Speedup PC Speedup PC
Dataset (min) (min) 1 wrclient/18 wrclient (min) PC/18 wrclient

1 13.95 176.28 12.64 122.13 8.7
2 25.82 380.18 14.7 258.31 10.0
3 43.72 631.67 14.4 443.41 10.1
4 63.97 961.43 15.0 688.75 10.8
5 81.63 1440.82 17.7 917.92 11.2
6 105.37 1842.43 17.5 1145.13 10.9
11 208.93 3545.45 17.0 2254.50 10.8

with openMP to use the quad cores efficiently would upgrade SAMP compute system bandwidth
significantly. In turn, our current performance would be enhanced.

4. CONCLUSION

This paper provides a new cloud-based compute system to use with zeolite entries from the ICSD
and obtain automatically their classification into 41 framework types. Our novel automated system is
composed of four services: supercell, visualization, descriptor, and ZSP, which execute the packages

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
DOI: 10.1002/cpe

A CLOUD COMPUTING SYSTEM IN WINDOWS AZURE PLATFORM

and codes needed for building the machine learning model that classifies zeolites based on their
structure. In addition, the underlying model of SAMP compute system employs a minimum of
resources in the cloud. In fact, the SMB protocol used to share the services and Xdrive among
the wrclient instances enables an excellent parallelism such that when enough data is analyzed, an
almost perfect speedup is obtained. For applications that require embarrassingly parallel workloads,
our compute system renders excellent performance at low cost. In addition, the pay-as-you go cloud
paradigm united with an efficient compute system may gain popularity as a green and clean approach
to computing in the sciences and engineering [49].

We were unable to test the scalability of our model because the resources in WA provided by our
sponsor were limited to 20 processors. It would be interesting to test the upper limit at which the
speedup of the parallel implementation starts to degrade. In addition, a larger impact in the science
community would be gained by Windows Azure platform, if certain software such as VC++/Java
runtime libraries would reside permanently in the cloud. This would reduce significantly the time to
load the system to the cloud, that at 100 min, is currently too long. An alternative implementation
in which a drive is additionally distributed to each worker role client instance is currently under
development for improving SAMP performance.

The cloud-based compute system developed is easily generalizable. It suffices to change the
services (codes to be executed) and other science and engineering applications that manipulate data
can use this cloud compute system. Such applications are usually data intensive and computationally
intensive. Both will benefit by the parallelization scheme that supports the SAMP compute system.
In particular, the researcher community that employs classical and quantum scientific open-source
packages for atomistic simulations (LAMMPS [34], NAMD [35], SIESTA [36], CPMD [37], among
others) will find that the SAMP compute system allows access to resources in the WA cloud that
otherwise might be difficult to procure with local hardware.

In summary, SAMP compute system is one of the very few cloud implementations currently
available to the science community. Its use in Windows Azure will prove simple and robust, offering
high parallelism and scalability.

ACKNOWLEDGEMENTS

This work was supported under the National Science Foundation grant CHE-0626111. The computing
time allocation in the Windows Azure cloud was awarded by Microsoft Research Division QX gratefully
acknowledges the fellowship support from Southwest Jiangton University.

REFERENCES

1. Buyya R, Yeo CS, Venugopa S, Broberg J, Brandic I. Cloud computing and emerging IT platforms: vision, hype, and
reality for delivering computing as the 5th utility. Future Generation Computing Systems 2009; 25:559–616.

2. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I, Zaharia
M. A view of cloud computing. Communications of the Association for Computing Machinery 2010; 53:50–58.

3. Watson P, Hiden H, Woodman S. e-Science Central for CARMEN: science as a service. Concurrency and
Computation: Practice and Experience 2010; 22(17):2369–2380.

4. Yin JW, Ye YM, Wu B, Chen ZN. Cloud computing oriented network operating system and service platform. In IEEE
Int. Conf. on Pervasive Computing and Communications Workshops. IEEE: Seattle, WA, March 21, 2011; 111–116.

5. Mell P, Grance T. The NIST Definition of Cloud Computing. Publication 800-145, National Institute of Science and
Technology, 2011. (Available from: http://csrc.nist.gov/SP800-145.pdf) [Accessed date: July 10, 2012].

6. Srirama SN, Jakovits P, Vainikko E. Adapting scientific computing problems to clouds using MapReduce. Future
Generation Computing Systems 2012; 28:184–192.

7. Yuan D, Yang Y, Liu X, Chen JJ. A data placement strategy in scientific cloud workflows. Future Generation
Computing Systems 2012; 26:1200–1214.

8. Peng JJ, Zhang XJ, Lei Z, Zhang BF, Zhang W, Li Q. Comparison of several cloud computing platforms. In 2nd. Int.
Symp. on Information Science and Engineering (ISISE 2009). IEEE: Shanghai, China, Dec. 26, 2009; 23–27.

9. Amazon elastic compute cloud (Amazon EC2). (Available from: http://aws.amazon.com/ec2/) [Accessed date:
April 09, 2012].

10. Akioka S, Muraoka Y. HPC benchmarks on Amazon EC2. In Proc. IEEE 24th Int. Conf. on Advanced Information
Networking and Applications Workshops (WAINA 2010). IEEE: Perth, WA , Australia, April 20, 2010; 1029–1034.

11. Walker E. Benchmarking Amazon EC2 for high-performance scientific computing. Login 2008; 33:18–33.
12. Ciurana E. Developing with Google App Engine. Apress: New York, 2009.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
DOI: 10.1002/cpe

Q. XING AND E. BLAISTEN-BAROJAS

13. Widera P, Krasnogor N. Protein models comparator: scalable bioinformatics computing on the Google App Engine
platform. Computing Research Repository 2011; 1:1–8.

14. Lu W, Jackson J, Barga R. AzureBlast: a case study of developing science applications on the cloud. In Proc. 19th
ACM Int. Symp. on High Performance Distributed Computing (HPDC ’10). ACM: Chicago, IL, June 20, 2010;
413–420.

15. Hill Z, Li J, Mao M, Ruiz-Alvarez A. Early observations on the performance of Windows Azure. In Proc. 19th
ACM Int. Symp. on High Performance Distributed Computing (HPDC ’10). ACM: Chicago, IL, June 20, 2010;
135–146.

16. de Oliveira D, Ogasawara E, Ocana K, Baiao F, Mattoso M. An adaptive parallel execution strategy for
cloud-based scientific workflows. Concurrency and Computation: Practice and Experience 2011; [Online]. DOI:
10.1002/cpe.1880.

17. Gunarathne T, Wu T-L, Choi JY, Bae S-H, Qiu J. Cloud computing paradigms for pleasingly parallel biomedical
applications. Concurrency and Computation: Practice and Experience 2011; 23(17):2338–2354.

18. Yuan D, Yang Y, Liu X, Zhang G, Chen J. A data dependency based strategy for intermediate data storage in scientific
cloud workflow systems. Concurrency and Computation: Practice and Experience 2010; 24:956–976.

19. Vockler J-S, Juve D, Deelman E, Rynge M, Berriman B. Experiences using cloud computing for a scientific
workflow application. In Proc. of the 2nd Int. Workshop on Scientific Cloud Computing (ScienceCloud ’11). ACM:
San Jose, CA, June 8, 2011; 15–24.

20. Li X, Wang Y, Chen X. Cold chain logistics system based on cloud computing. Concurrency and Computation:
Practice and Experience 2011; [Online]. DOI: 10.1002/cpe.1840.

21. National Science Foundation, Computing in the Cloud. (Available from: http://www.nsf.gov/funding/pgm_summ.
jsp?pims_id=503291) [Accessed date: July 10, 2012].

22. Iosup A, Ostermann S, Yigitbasi MN, Prodan R, Fahringer T, Epema DHJ. Performance analysis of Cloud com-
puting services for many-tasks scientific computing. IEEE Transactions on Parallel and Distributed Systems 2011;
22:931–945.

23. Toews E, Satchwill B, Rankin R, Shillington J, King T. An internationally distributed cloud for science: the
cloud-enabled space weather platfrom. In Proc. of the 2nd Int. Workshop on Software Engineering for Cloud
Computing (SECLOUD ’11). ACM: Waikiki, Honolulu, HI , USA, May 21–28, 2011; 1–7.

24. Li Q, Hao QF, Xiao LM, Li ZJ. An integrated approach to automatic management of virtualized resources in cloud
environments. The Computer Journal 2011; 54:905–919.

25. Armstrong D, Djemame K. Performance issues in clouds: an evaluation of virtual images propagation and I/O
paravirtualization. The Computer Journal 2011; 54:836–849.

26. Chappell D. Introducing the Azure services platform. Technical Report, DavidChappell & Associates, San Francisco,
California, USA, 2008.

27. Li J, Humphrey M, Agarwal D, Jackson K, van Inger C, Youngryel B. eScience in the cloud: A MODIS satellite data
reprojection and reduction pipeline in the Windows Azure platform. In IEEE Int. Symp. on Parallel & Distributed
Processing (IPDPS). IEEE: Atlanta, TX, April 19, 2010; 1–10.

28. Zhou L, Varadharajan V, Hitchens M. Enforcing role-based access control for secure data storage in the Cloud. The
Computer Journal 2011; 54:1675–1687.

29. Ostermann S, Iosup A, Yigitbasi N, Prodan R, Fahringer T, Epema D. A performance analysis of EC2 cloud
computing services for scientific computing. Cloud Computing 2010; 34:115–131.

30. Yang SJ, Lach-hab M, Vaisman II, Blaisten-Barojas E. Identifying zeolite frameworks with a machine learning
approach. Journal of Physical Chemistry 2009; 113:21721–21725.

31. Yang SJ, Lach-hab M, Vaisman II, Blaisten-Barojas E. Framework-type determination for zeolite structures in the
inorganic crystal structure database. Journal of Physical and Chemical Reference 2010; 39:33102–33146.

32. FIZ/NIST Inorganic Crystal Structure Database. (Available from: http://www.nist.gov/srd/nist84.cfm) [Accessed
date: April 12, 2012].

33. Breiman L. Random forests. Machine Learning 2001; 45:5–32.
34. LAMMPS: molecular dynamics simulator, Sandia National Laboratory, US Department of Energy. (Available from:

http://lammps.sandia.gov) [Accessed date: July 10, 2012].
35. NAMD: scalable molecular dynamics, theoretical and computational biophysics group, Beckman Institute for

Advanced Science and Technology, University of Illinois at Urbana-Champaign. (Available from: http://www.ks.
uiuc.edu/Research/namd/) [Accessed date: July 10, 2012].

36. SIESTA: Spanish initiative for electronic simulations with thousands of atoms. (Available from: http://www.icmab.
es/dmmis/leem/siesta/) [Accessed date: July 10, 2012].

37. CPMD: parallelized plane wave/pseudopotential density functional theory for ab-initio molecular dynamics.
(Available from: http://www.cpmd.org/) [Accessed date: July 10, 2012].

38. Jennings R. Cloud Computing with the Windows Azure Platform. Wrox: UK, 2009.
39. Calder B, Wang J, Ogus A, Nilakantan, Skjolsvold A, McKelvie S, Xu Y, Srivastav S, Wu JS, Simitci H,

Haridas J, Uddaraju C, Khatri H, Edwards A, Bedekar V, Mainali S, Abbasi R, Agarwal A, ul Haq MF, ul Haq,
Bhardwaj D, Dayanand S, Adusumilli A, McNett M, Sankaran S, Manivannan K, Rigas L. Windows Azure storage:
a highly available cloud storage service with strong consistency. In Proc. 23rd ACM Symp. on Operating Systems
Principles (SOSP 2011). ACM: Cascais, Portugal, October 23, 2011; 143–157.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
DOI: 10.1002/cpe

A CLOUD COMPUTING SYSTEM IN WINDOWS AZURE PLATFORM

40. Windows Azure Storage Team. (Available from: http://blogs.msdn.com/b/windowsazurestorage/) [Accessed date:
April 09, 2012].

41. Xi K, Tang Y, Hu JK. Correlation keystroke verification scheme for user access control in cloud computing
environment. The Computer Journal 2011; 54:1632–1644.

42. Carr DA, Lach-Hab M, Yang SJ, Vaisman II, Blaisten-Barojas E. Machine learning approach for structure-based
zeolite classification. Microporous and Mesoporous Materials 2009; 117:339–349.

43. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: an update.
Association of Computing Machinery SIGKDD Explorations Newsletter 2009; 1:10–18.

44. Jmol: an open-source java viewer for chemical structures in 3D. (Available from: http://www.jmol.org/) [Accessed
date: April 09, 2012].

45. Windows Azure Service. (Available from: http://msdn.microsoft.com/en-us/library/windowsazure/) [Accessed date:
April 09, 2012].

46. Sharpe R. Just what is SMB? (Available from: http://www.samba.org/cifs/docs/what-is-smb.html) [Accessed date:
April 09, 2012].

47. Using SMB to share a Windows azure drive among multiple role instances. (Available from: http://blogs.
msdn.com/b/windowsazurestorage/archive/2011/04/16/using-smb-to-share-a-windows-azure-drive-among-multiple-
role-instances.aspx) [Accessed date: April 09, 2012].

48. Kommalapati H. Windows azure capacity assessment. (Available from: http://blogs.msdn.com/b/hanuk/archive/
2011/02/01/windows-azure-capacity-assessment.aspx) [Accessed date: April 09, 2012].

49. Berl A, Gelenbe E, Di Girolamo M, Giuliani G, De Meer H, Dang MQ, Pentikousis K. Energy-efficient cloud
computing. The Computer Journal 2010; 53:1045–1051.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
DOI: 10.1002/cpe

