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It is shown that the qualitative arguments given up to now in the literature, arc not
enough to justify the applications of Random Matrix Theory to the small metallic particle
problem. Using a two-dimensional model we show that the spacing distributions approach
Poisson's law. as originally assumed by Kubo, who computed the specific heat for this case.
By means of a numerical calculation we show, however, that Kubo's result is only valid for
kg7 6 -2 0.025, where 8 is the mean spacing and Ay is Boltzmann's constant.

1. INTRODUCTION

The physical properties of an assembly of small metallic particles differ from those
of the metal in bulk. In particular, the thermodynamic properties of electrons reflect
directly the fact that the single-particle spectrum is discrete, with a mean spacing 6
between states around the Fermi level of the order of 10-* eV (or the energy kg7 at | K)
for a particle consisting of 10° atoms. Under these conditions, at low temperatures
only a few electrons are excited above the Fermi level; as a consequence, the statistical
characteristics of the spectrum have a direct influence in determining the partition
function Z and thermodynamic properties derived from it, such as the specific heat at
constant volume C, .

Historically, the first attempt to determine the specific heat of a powder of small
metallic particles at low temperatures was due to Fréhlich [1], who assumed the
electronic levels of each particle to be equally spaced, thereby obtaining an exponential
behavior of C, with temperature. Twenty-five years later, Kubo [2] again tackied the
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problem, but now assuming a completely random distribution for the electron energy
levels: a spacing s between two levels and containing & levels in between follows the
Poisson distribution

plk; x) = xte~/k! (1.1)

where v = 5;8. Kubo argued that the random character of the spectra arises from
surface irregularities which remove degeneracies or any other systematic spectral
property which could be present in a particle of regular shape. He calculated explicitly
the partition function and obtained a linear dependence of C, with 7 at low tempera-
tures. the coefficient of T being, however, smaller than the one corresponding to the
metal in bulk: this coefficient is also different according to whether the number of
electrons in the particle is even or odd.

But Gor'kov and Eliashberg [3] (GE), using the same qualitative argument as Kubo,
assumed that surface irregularities of the order of atomic dimensions would lead to
a Hamiltonian matrix with random elements when expressed in the single-electron
basis. In other words, GE considered the ideas of Random Matrix Theory (RMT), as
developed by Wigner [4], Dyson [5], Mehta [6], Porter [7], and others [8] for nuclear
Jevel statistical fluctuations, to be applicable to the small metallic particle problem.

According to Mehta [6], one could justify the assumption of Gor’kov and Eliashberg
in the following way. The electronic energies, relevant to compute the partition
function, are the eigenvalues of a fixed Hamiltonian but with random boundary
conditions, which may be incorporated into a random matrix through the use of
fictitious potentials. The appropriate ensemble of random matrices to be used depends
on the particular conditions of the powder (a) if the number of electrons is even and
there is no magnetic field, the orthogonal ensemble is applicable, since time reversal
holds:! (b) when the number of electrons is odd and no magnetic field is present, the
symplectic ensemble applies: and (c) when there is a magnetic field A. the Hamiltonian
is no longer invariant under time reversal, and the ensemble of random matrices
suitable to represent the metallic powder should be of the unitary type if uH >,
u being the electron magnetic moment.

In any case, independent of which of the ensembles of RMT is to be used, level
repulsion holds: p(0; x) > 0 when x — 0, and a lack of small spacings occurs. In
particular. for the orthogonal ensemble of case (a), the nearest neighbor spacing
distribution is closely approximated by Wigner’s distribution {9]

pw(0; X) == (7x/2) exp( — mx*/4). (1.2)

This contrasts with Poisson's law (1.1) where the value x -= 0 is the most probable
one for & — 0, and leads to a different T-dependence for C, at low temperatures.
For the orthogonal ensemble C, varies as T2 for the symplectic ensemble a 73 variation
is obtained, and for the unitary case C, is proportional to 7%

1 The orthogonal ensemble also applies if the number of fermions is cither even or odd and the
interaction is invariant under both rotations and time reversal; however, in our case, the interaction
due to surface irregularities is not invariant under rotations.
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As we see, the same qualitative argument has led to different results concerning
the statistical spectral properties of a powder of small metallic particles. Tt would
certainly be interesting to analyze more closely from a quantitative point of view the
various assumptions involved in previous works.

In this paper we shall give evidence that it is not possible, in general, to formulate
the boundary perturbation problem in matrix form; this we shall do in Section 2. This
implies that RMT is not always applicable to the problem and the question of what is
the effect of a boundary irregularity on the statistical properties of the electronic
spectrum remains, therefore, open. We answer this question in a particular case
by considering, in Section 3, a simple two-dimensional model for which Schrodinger’s
equation is exactly soluble. We find that Poisson’s law holds. A model for which this
law is followed exactly is used in Section 4 to obtain numerical values for the specific
heat at finite temperatures.

2. Is It PossIBLE TO DESCRIBE THE PROBLEM OF RANDOM BOUNDARY PERTURBATIONS
IN THE LANGUAGE OF RANDOM MATRIX THEORY ?

Up to now, the application of RMT to the small metallic particle problem has been
justified [3], as we already noted, by an argument of a qualitative nature. Tt is assumed
that irregularities of the order of atomic dimensions on the boundary of the small
particle would destroy any systematic behavior of the electronic energy levels and
cause the statistical properties of the spectrum to be properly described by an
ensemble of random matrices.

Two basic assumptions are implicitly made in the above argument. First, one
supposes that the problem of a boundary perturbation can indeed be formulated
as a matrix problem: and, second, that the assembly of matrices associated with the
various small metallic particles is well represented by one of the conventional
ensembles of RMT, thus giving rise to a repulsion of energy levels. We shall now
study the first assumption. ,

The problem of perturbations of the boundary shape can be stated, in the free-
electron picture, in the following way. Consider a region R’ in which the solution
to the differential equation

(V‘Z - k“'l) ¢n =0 (21)

is known. The eigenfunctions ¢, obey given conditions on the boundary S’ of R’
A region R contained in R’ (Fig. 1) is then obtained by perturbing S” and the problem
is to determine the new eigenvalues and eigenfunctions, which now satisfy the same
boundary conditions as ¢, , but on the surface S, the boundary of R.

When Neumann boundary conditions apply, the problem can indeed be formulated
in matrix language, using the unperturbed wavefunctions ¢, as a basis. This is done,
for example, in the book by Morse and Feshbach [10], where perturbation-iteration
procedures are applied to the eigenvalue equations; the analysis of convergence is also
included. However, for an impenetrable small metallic particle, it is Dirichlet con-
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FiG. 1. The problem of the perturbation in the shape of the boundary. Solutions of Schrodinger’s
equation in region R bounded by S are to be obtained from those in region R’ bounded by S’.

ditions that should be obeyed, since the electronic wavefunctions should vanish at the
particle boundary. But then difficulties arise to cast the boundary perturbation
problem as a matrix one, as we now intend to demonstrate.

The reason for the difficulties in the Dirichlet case can be seen qualitatively in a very
simple way. Consider, in region R’, the equation

VE—V=K34,=0 (2.2)
with
Vir) = ¥, for re R" but ré¢R,
(2.3)
=0 for re R,
and such that
() = 0, resS’. 2.9

It is now clear that, when V increases, i,, decreases exponentially in the region
between S and S’. The function i, will become zero on S only when ¥V, — 0.
Therefore, in order that i, obey Dirichlet conditions on S, the matrix elements of V'
with respect to the unperturbed wavefunctions ¢, become infinite.

Notice that the same argument does not hold true for Neumann boundary
conditions. A simple illustration of this can now be given for a one-dimensional
problem.

It is our purpose to write the matrix equation determining the eigenvalues X2 of

(d2,,/dx?) — K, %, = 0 (2.5
in the interval {0, 1 — ¢} with ¢ > 0 and

(0) = (1 — €) = 0, (2.5a)
in terms of the eigenfunctions ¢,, satisfying the differential equation

(d2¢771/dx2) -+ k7712¢1n = () (26)
with boundary conditions

¢nz(0) = ¢m(1) = 0. (263)
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The solutions ¢,, are

Pa(x) = 2/(1 — N2 sin(mmx/{l — €)) 0 < x <1 —e¢

= 0 | —e < x <1, 7)
with K,2 = (72m%/(1 — €)?) while the ¢,, are given by
&, == 21 Zsin(mmx). (2.8)
In order to obtain the Hamiltonian matrix, we construct the operator
H = i P K2 (2.9)

m=1

whose eigenvalues are indeed K% and which differs from the Hamiltonian by the
factor #%/(2m,).

The desired matrix elements of #° with respect to the unperturbed wavefunctions
are then

(i H > == %—6- sin{mr(l — €)} sin{ms(l — €)}

X Z mm? — (1 — €22y 1 {m? — (1 — )53t (2.10)
m=1
where 1 and 1 — € are assumed to be incommensurable, for convenience. As the
dummy index m tends to infinity, each term in this series approaches a constant,
and the series does not converge.
On the other hand, for Neumann conditions, the corresponding series would be
(forr, s = 0)

b AN b> =41 — € rssin{mr(l — €)} sin{ms(] — €);

SO — (1 — Pt mE — (1 — €37 (2.11)
=1
and no convergence problems arise, since each term of the series goes as m~2 when
m—> oo.

Thus, when Dirichlet conditions are required, the matrix elements of 2 are infinite
and the problem of boundary perturbations cannot be cast in matrix form. As a
consequence, a random boundary perturbation is not appropriately represented by
RMT. It seems that the conclusions of Gor’kov and Eliashberg should be revised.
In view of the generality of spacing distributions [11, 12] and since we know that there
are examples (such as the two-dimensional example considered at the end of this
section) in which the spectrum fluctuations are independent of the boundary con-
ditions, it is of interest to analyze Neumann's problem in matrix form.
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To obtain the eigenfunctions ,, whose normal derivative &, /¢n vanishes on the
surface S, the Hermitian matrix
’%/s == k1'2 : Nrs {- Ar‘x (212)

must be diagonalized [10]. Here k, are the eigenvalues of the unperturbed problem,
N, is the overlap

N, = J b dV (2.13)
R

of the unperturbed functions in the perturbed region R and A, is given by
A, = §> by o (2.14)

S being the boundary of R.

Before discussing the results of the diagonalization of (2.12), let us proceed via
perturbation theory for nonorthogonal wavefunctions [10]: one has, up to second
order, the following expression for the new eigenvalues K2

(K'mz - k'n/z) 4}\’)»1):« Amm T Z {Amp - (sz - /\'m?-) N

plsng)

1
mpt

-~ {Apm - (K’pz - /(pz) Npm}l{Npp(k’mz - kpz) e A)miil- (215)

In the same example as before, when the original region is the interval {0, 1} and
the perturbed one is the interval {0, I — €} we get from (2.15)

) ™

Ky = k2 - sin(2mre)
I — e
4am? . cos? pre
[ -€ sin*(mme) p(;") ;(T — e)(m* — p?) — psin 2pme (2.16)

We learn from this formula that, for small m, € indeed plays the role of an expansion
parameter. However, for large m, which is the case of interest when discussing the
eigenvalues around the Fermi level for a small metallic particle, it is no longer clear
what the expansion parameter is and the perturbation series is no longer meaningful.
We thus turn to the diagonalization method.

We first fix our attention on a given energy ¢ and take d unperturbed wavefunctions
¢, with k,* ~ &; using Eqgs. (2.12) to (2.14) we construct a d-dimensional matrix
and study whether the eigenvalues obtained after diagonalizing it approach a definite
limit as d grows. For the one-dimensional example we dealt with above, no problem
seems to arise. For example, when € = 0.1 the first 19 eigenvalues were obtained
correctly by taking d = 21, as is shown in Fig. 2. The situation is quite different in a
closely related two-dimensional problem. If we take as the unperturbed problem a
square of side I (region R’), while region R is taken to be a rectangle of sides 1 — e
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FiG. 2. Columns I and 1I show the first 21 levels of the single-particle spectrum for the one-
dimensional Neumann problem in the interval {0, 1} and {0, 0.9}, respectively. Column III shows
the first 19 eigenvalues obtained by diagonalizing matrix (2.12) in the ‘basis provided by the 21 un-
perturbed states of column 1.

and 1. we find a good approximation only when e is much smaller than a typical
wavelength in the region of the spectrum we are studying. If this condition is not
fullfilled, no trace of convergence is observed, even if a value d as large as 82 is used,
asin Fig. 3. We expect this situation to be even worse for a three-dimensional problem,
since then the level density increases with &, .

From the discussion presented up to now, we can draw the following conclusions.
A problem of boundary perturbations with Dirichlet conditions cannot even be
formulated in terms of matrices; on the other hand, a problem with Neumann’s
conditions leads to finite matrix elements; this, however, does not mean that we have
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Fi1G. 3. A portion of the spectrum for the two-dimensional model calculated exactly (Eq. (3.3))
and by diagonalizing the matrix (2.12) with ¢ = 82 for two cases (a) € = 0.001 and (b) ¢ -- 0.01.
A typical wavelength in this energy region is of the order of 0.08.

achieved a convergent matrix formulation of the problem. In fact, the numerical
example shows no trace of convergence to the exact eigenvalues.

The problem will then be analyzed from a different point of view in the following
section.

3. LEVEL SPACING DISTRIBUTION AND THE SPECIFIC HEAT OF AN ASSEMBLY OF SMALL
METALLIC PLATELETS: A SIMPLE MODEL

Since RMT cannot be applied, in general, to describe random boundary pertur-
bations, the spacing distribution appropriate to the small metallic particle problem
remains to be investigated. We thus proceed to analyze it by means of a simple
two-dimensional soluble model, which simulates an assembly of platelets.

Consider an assembly of small platelets, in which platelet x contains n¥ electrons.
To obtain the eigenvalues of the one-electron Schrodinger equation

(VKD , =0 (3.1
with
i, (r) = 0, res (3.2)

is clearly a very difficult problem for a boundary S of arbitrary shape. However,
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Fic. 4. Nearest neighbor spacing distribution in two different regions of the spectrum defined
by Eq. (3.3) for ¢ = 0.015. (a) Region from level 1 to 209; (b) region from level 965 to 1200.

there are simple cases for which the boundaries can be varied at random and yet the
eigenvalue problem can be solved exactly. For example, suppose that the small
metallic platelets are simulated by rectangles of sides I — € and 1, € being the quantity
that generates the assembly. The eigenvalues are then known, being
Pt ny? 5

Eyn = -+ n,’

2m, (1 — e Y (3.3)
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We shall first discuss the spacing distribution for one such rectangle, defined by a
fixed value of e. The histograms for the spacing between successive levels are shown
in Fig. 4 for two different regions in the spectrum. We see that in both cases the
distributions are not consistent with Eq. (1.2), since they show no level repulsion;
they rather approximate the Poisson nearest-neighbor distribution (L.1), with & =0,
A much better idea of how closely the historgams of Fig. 4 follow Poisson’s law is
obtained through the value of the statistic w; the value of w arises from a least-
squares fit of the curve

PoX) == axve—Bew™? » (3.4)

to the histogram [13]. Here ~ and B are chosen so that the mean value of x equals one
and p,(x) is normalized. When w -= 0, (3.4) reduces to Poisson’s distribution, and
when w == 1 to Wigner’s distribution (1.2). For case (a) in Fig. 4, w = 0.209 < 0.084
and for case (b) w = 0.023 - 0.035, indicating that as we g0 up in energy in the
spectrum and the electron wavelengths involved approach the size of the perturbation,
p(0; x) tends to a Poisson distribution.

Therefore, in this example a perturbation on the boundary does not produce level
repulsion, but rather a completely random distribution.

We next construct an assembly of N rectangles by varying the number st
(x = 1,..., N) of electrons, keeping the electronic density constant (therefore varying
the size of each platelet). The assembly is such that for € — 0, n& — 800, and n™@
varies from 750 to 850. The histogram shown in Fig. 5 for the spacing between the
Fermi level and the next one for the assembly of platelets is again of the Poisson type,?
as evidenced by the value w = 0.003 < 0.05. We then conclude that the assembly of
platelets shows a spacing distribution different from those predicted by conventional
RMT; in particular, perturbing the boundary does not induce level repulsion in the
spectrum. Our result then agrees with what was first assumed by Kubo [2].

By assuming an energy-independent level density and a completely random
sequence of levels, Kubo [2] obtained the specific heat C, at low temperatures. He
found

= ’ ii L kBT : i ' (x ’
C, kB!5.024( 2 )‘0.76( : ) Sl even,  (3.5a)
— kg 3.290( kgT ) 233 (_kg—t)" ] : n odd, (3.5b)
with an even-odd average
C, = kg{4.157(kgT}8) + 1.55(k5T/8)2 + -} (3.6)

up to second order in (kg7/8), where ky is Boltzmann's constant.

* Notice that we have analyzed the spacing distributions in two different ways. First, we considered
many spacings all belonging to a single platelet and, second, a single spacing from the spectra of
many platelets at a fixed energy. Since we have found the same distribution in both instances, we
say that the system of platelets shows the ergodic property for level fluctuations [12].
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Fic. 5. Histogram for the spacing between the Fermi level and the next one for the assembly of
platelets described in the text.

Since we know that the fluctuations in the levels of our model are those of a Poisson
type, we shall extend Kubo’s result by computing numerically the partition function Z
and the thermodynamic properties derived from it, for an assembly of N single-
electron spectra constructed with a random number generator in such a way that it
has constant level density and that it follows Poisson’s law (1.1) for spacing distri-
butions exactly.?

For any given temperature, Z contains a finite number of terms if a numerical
accuracy is fixed. This allows us to extend Kubo’s results (3.5) to higher values of
ksT/5.

The partition function for the assembly of N particles is

N
Z=1T]z» (3.7

r=1
where

7™ = Y ¢ exp —{& kT (3.8)
A

Here g\ is the degeneracy of the A level of the ath particle, ¢* being the corre-

sponding energy. From this, the specific heat is given by

N -2 2
Cufks = (IN)1/kgT)? Y S (SEsy) — s (3.9)

a=1

¥ We recall that the level density is assumed independent of the energy in the calculation by Kubo
which, incidentally, is also true in our two-dimensional model.
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Fi1G. 6. Average and standard deviation of the specific heat C, for an even number of electrons,
for a sample of 1000 single-electron spectra obeying Poisson’s distribution (1.1). The dashed curve
is Kubo’s result (3.5a).

where

SV =Y g exp —(6WksT)  1=10,1.2. (3.10)
A

The results of the numerical calculation for the specific heat are shown in Figs. 6 and 7
for an even and an odd number of electrons, respectively. In both cases N — 1000
spectra were used; the average value of C, corresponds to the dots and the error bars
give the standard deviation for a sample of 1000 spectra. Notice that our result
deviates from Eq. (3.5) when k57/8 = 0.025: this is so, since at higher temperatures
more many-electron configurations, not taken into account in Kubo’s calculation,
start to be important. It is also interesting to calculate analytically the standard
deviation of C, (i.e., ({C,2- — (C > 2 where the bracket indicates an average over.
the spectra), within the same approximation used by Kubo. As an example we show
in Fig. 8, in the odd case, a comparison between the standard deviation of C, obtained
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FiG. 7. Average and standard deviation of the specific heat C, for an odd number of electrons,
for a sample of 1000 single-electron spectra obeying Poisson’s distribution (1.1). The dashed curve is
Kubo’s result (3.5b).
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FiG. 8. Theoretical (dashed line) and numerical (solid line) standard deviation of the specific
- heat C, of Fig. 7.
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analytically, which is proportional to (kg7)'/2, and the one obtained numerically and
shown as the error bars in Fig. 7. We see that both results agree once more only when
ksT/6 < 0.025. Another calculation of C, has been given by Denton et al. [14]; a
comparison with our results is given elsewhere [15].

4. CONCLUSIONS

Several points emerge from this paper. First, it seems that RMT is not applicable,
at least not in general, to the problem of boundary perturbations, since this problem
cannot be formulated in matrix form. Second, the analysis of a simple two-dimensional
model tells us that the spacing distributions of an assembly of small particles are not
of the type encountered in RMT but rather of a Poisson nature, as originally assumed
by Kubo and as was known in acoustical problems [16]. This is contrary to what is
normally believed [17], even on the grounds of experimental evidence concerning the
magnetic susceptibility of small metallic particles. This evidence is, however, scanty
and somewhat unreliable at very low temperatures, since impurities and other effects
could play a significant role [18, 19].

In any case, assuming a Poisson spacing distribution for an assembly of N spectra,
we computed numerically an exact value for the specific heat. The calculation shows
that Kubo’s original analytical result is correct only for kg7/d << 0.025, a rather
small value.
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